001    //$HeadURL: svn+ssh://rbezema@svn.wald.intevation.org/deegree/base/branches/2.2_testing/src/org/deegree/graphics/displayelements/CurveWalker.java $
002    /*----------------    FILE HEADER  ------------------------------------------
003    
004     This file is part of deegree.
005     Copyright (C) 2001-2008 by:
006     EXSE, Department of Geography, University of Bonn
007     http://www.giub.uni-bonn.de/deegree/
008     lat/lon GmbH
009     http://www.lat-lon.de
010    
011     This library is free software; you can redistribute it and/or
012     modify it under the terms of the GNU Lesser General Public
013     License as published by the Free Software Foundation; either
014     version 2.1 of the License, or (at your option) any later version.
015    
016     This library is distributed in the hope that it will be useful,
017     but WITHOUT ANY WARRANTY; without even the implied warranty of
018     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
019     Lesser General Public License for more details.
020    
021     You should have received a copy of the GNU Lesser General Public
022     License along with this library; if not, write to the Free Software
023     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
024    
025     Contact:
026    
027     Andreas Poth
028     lat/lon GmbH
029     Aennchenstr. 19
030     53115 Bonn
031     Germany
032     E-Mail: poth@lat-lon.de
033    
034     Prof. Dr. Klaus Greve
035     Department of Geography
036     University of Bonn
037     Meckenheimer Allee 166
038     53115 Bonn
039     Germany
040     E-Mail: greve@giub.uni-bonn.de
041    
042     ---------------------------------------------------------------------------*/
043    package org.deegree.graphics.displayelements;
044    
045    import java.awt.Rectangle;
046    import java.util.ArrayList;
047    import java.util.List;
048    
049    /**
050     * Walks along a given curve and generates positions on the line string in regular intervals (i.e. a
051     * series of points on the line string with steps of the same distance).
052     * 
053     * @author <a href="mailto:mschneider@lat-lon.de>Markus Schneider </a>
054     * @author last edited by: $Author: apoth $
055     * 
056     * @version $Revision: 9340 $, $Date: 2007-12-27 13:32:12 +0100 (Do, 27 Dez 2007) $
057     */
058    class CurveWalker {
059    
060        private double minX;
061    
062        private double minY;
063    
064        private double maxX;
065    
066        private double maxY;
067    
068        /**
069         * Creates a new instance of <code>CurveWalker</code>. The region of interest (where
070         * positions are actually needed, because they are visible) is specified by the given
071         * {@link Rectangle}.
072         * 
073         * @param roi
074         *            region of interest (visibile area)
075         */
076        CurveWalker( Rectangle roi ) {
077            minX = roi.getMinX();
078            minY = roi.getMinY();
079            maxX = roi.getMaxX();
080            maxY = roi.getMaxY();
081        }
082    
083        /**
084         * Determines positions on the given curve where a caption could be drawn. For each of these
085         * positions, three candidates are produced; one on the line, one above of it and one below.
086         * 
087         * @param pos
088         * @param width
089         *            distance between single positions
090         * @return ArrayList containing positions
091         */
092        ArrayList<double[]> createPositions( int[][] pos, double width, boolean polygon ) {
093    
094            // walk along the linestring and "collect" possible placement positions
095            int w = (int) width;
096            double lastX = pos[0][0];
097            double lastY = pos[1][0];
098            double count = pos[2][0];
099            double boxStartX = lastX;
100            double boxStartY = lastY;
101    
102            ArrayList<double[]> labels = new ArrayList<double[]>( 300 );
103            List<double[]> eCandidates = new ArrayList<double[]>( 300 );
104            int i = 0;
105    
106            while ( ( i <= count && polygon ) || i < count ) {
107                double x = i == count ? pos[0][0] : pos[0][i];
108                double y = i == count ? pos[1][0] : pos[1][i];
109    
110                // segment found where endpoint of box should be located?
111                if ( getDistance( boxStartX, boxStartY, x, y ) >= w ) {
112    
113                    double[] p0 = new double[] { boxStartX, boxStartY };
114                    double[] p1 = new double[] { lastX, lastY };
115                    double[] p2 = new double[] { x, y };
116    
117                    double[] p = findPointWithDistance( p0, p1, p2, w );
118                    x = p[0];
119                    y = p[1];
120    
121                    lastX = x;
122                    lastY = y;
123                    double boxEndX = x;
124                    double boxEndY = y;
125    
126                    double rotation = getSlope( boxStartX, boxStartY, boxEndX, boxEndY );
127    
128                    /*
129                     * double[] deviation = calcDeviation(new double[] { boxStartX, boxStartY }, new
130                     * double[] { boxEndX, boxEndY }, eCandidates);
131                     */
132    
133                    // only add position if it is (at least partly) visible
134                    if ( isInROI( boxStartX, boxStartY ) || isInROI( boxStartX, boxEndY ) || isInROI( boxEndX, boxEndY )
135                         || isInROI( boxEndX, boxStartY ) ) {
136                        labels.add( new double[] { boxStartX, boxStartY, rotation } );
137                    }
138    
139                    boxStartX = lastX;
140                    boxStartY = lastY;
141                    eCandidates.clear();
142                } else {
143                    eCandidates.add( new double[] { x, y } );
144                    lastX = x;
145                    lastY = y;
146                    i++;
147                }
148            }
149            return labels;
150        }
151    
152        /**
153         * Returns whether the given point is inside the region of interest.
154         * 
155         * @param x
156         *            x coordinate of the point
157         * @param y
158         *            y coordinate of the point
159         * @return true, if the point is inside the region of interest, false otherwise
160         */
161        private boolean isInROI( double x, double y ) {
162            return x >= minX && x <= maxX && y >= minY && y <= maxY;
163        }
164    
165        /**
166         * Finds a point on the line between p1 and p2 that has a certain distance from point p0
167         * (provided that there is such a point).
168         * 
169         * @param p0
170         *            point that is used as reference point for the distance
171         * @param p1
172         *            starting point of the line
173         * @param p2
174         *            end point of the line
175         * @param d
176         *            distance
177         * @return a point on the line between p1 and p2 with distance d from p0
178         */
179        private static double[] findPointWithDistance( double[] p0, double[] p1, double[] p2, double d ) {
180    
181            double x, y;
182            double x0 = p0[0];
183            double y0 = p0[1];
184            double x1 = p1[0];
185            double y1 = p1[1];
186            double x2 = p2[0];
187            double y2 = p2[1];
188    
189            if ( x1 != x2 ) {
190                // line segment does not run vertical
191                double u = ( y2 - y1 ) / ( x2 - x1 );
192                double p = -2 * ( x0 + u * u * x1 - u * ( y1 - y0 ) ) / ( u * u + 1 );
193                double q = ( ( y1 - y0 ) * ( y1 - y0 ) + u * u * x1 * x1 + x0 * x0 - 2 * u * x1 * ( y1 - y0 ) - d * d )
194                           / ( u * u + 1 );
195                double minX = p1[0];
196                double maxX = p2[0];
197                double minY = p1[1];
198                double maxY = p2[1];
199                if ( minX > maxX ) {
200                    minX = p2[0];
201                    maxX = p1[0];
202                }
203                if ( minY > maxY ) {
204                    minY = p2[1];
205                    maxY = p1[1];
206                }
207    
208                if ( x1 < x2 ) {
209                    // to the right
210                    x = -p / 2 + Math.sqrt( ( p / 2 ) * ( p / 2 ) - q );
211                } else {
212                    // to the left
213                    x = -p / 2 - Math.sqrt( ( p / 2 ) * ( p / 2 ) - q );
214                }
215    
216                // if ((int) (x + 0.5) <= minX || (int) (x + 0.5) >= maxX) {
217                // x = -p / 2 + Math.sqrt ((p / 2) * (p / 2) - q);
218                // }
219                y = ( x - x1 ) * u + y1;
220            } else {
221                // vertical line segment
222                x = x1;
223                double minY = p1[1];
224                double maxY = p2[1];
225    
226                if ( minY > maxY ) {
227                    minY = p2[1];
228                    maxY = p1[1];
229                }
230    
231                double p = -2 * y0;
232                double q = y0 * y0 + ( x1 - x0 ) * ( x1 - x0 ) - d * d;
233    
234                if ( y1 > y2 ) {
235                    // down
236                    y = -p / 2 - Math.sqrt( ( p / 2 ) * ( p / 2 ) - q );
237                } else {
238                    // up
239                    y = -p / 2 + Math.sqrt( ( p / 2 ) * ( p / 2 ) - q );
240                }
241    
242                // y = -p / 2 - Math.sqrt ((p / 2) * (p / 2) - q);
243                // if ((int) (y + 0.5) <= minY || (int) (y + 0.5) >= maxY) {
244                // y = -p / 2 + Math.sqrt ((p / 2) * (p / 2) - q);
245                // }
246            }
247            return new double[] { x, y };
248        }
249    
250        /**
251         * Returns the slope of the line that is constructed by two given points.
252         * 
253         * @param x1
254         *            x coordinate of point 1
255         * @param y1
256         *            y coordinate of point 1
257         * @param x2
258         *            x coordinate of point 2
259         * @param y2
260         *            y coordinate of point 2
261         * @return the slope of the line (in degrees)
262         */
263        private double getSlope( double x1, double y1, double x2, double y2 ) {
264            double dx = x2 - x1;
265            double dy = -( y2 - y1 );
266            double rotation = 0.0;
267    
268            if ( dx <= 0 ) {
269                // dx = 0. division not possible.
270                if ( dx == 0 ) {
271                    dx = 1;
272                }
273                if ( dy <= 0 ) {
274                    // left down
275                    rotation = -Math.atan( dy / dx );
276                } else {
277                    // left up
278                    rotation = -Math.atan( dy / dx );
279                }
280            } else {
281                if ( dy <= 0 ) {
282                    // right down
283                    rotation = -Math.PI - Math.atan( dy / dx );
284                } else {
285                    // right up
286                    rotation = -Math.PI - Math.atan( dy / dx );
287                }
288            }
289            return Math.toDegrees( rotation );
290        }
291    
292        /**
293         * Returns the Euclidean distance between two given points.
294         * 
295         * @param x1
296         *            x coordinate of point 1
297         * @param y1
298         *            y coordinate of point 1
299         * @param x2
300         *            x coordinate of point 2
301         * @param y2
302         *            y coordinate of point 2
303         * @return the Euclidean distance between (x1,y1) and (x2,y2)
304         */
305        private double getDistance( double x1, double y1, double x2, double y2 ) {
306            double dx = x2 - x1;
307            double dy = y2 - y1;
308            return Math.sqrt( dx * dx + dy * dy );
309        }
310    
311        // /**
312        // * Returns the Euclidean distance between two given points.
313        // *
314        // * @param p1
315        // * point 1
316        // * @param p2
317        // * point 2
318        // * @return the Euclidean distance between p1 and p2
319        // */
320        // private double getDistance( double[] p1, double[] p2 ) {
321        // double dx = p1[0] - p2[0];
322        // double dy = p1[1] - p2[1];
323        // return Math.sqrt( dx * dx + dy * dy );
324        // }
325    
326        // /**
327        // * Calculates the maximum deviation that points on a linestring have to the ideal line between
328        // * the starting point and the end point.
329        // * <p>
330        // * The ideal line is thought to be running from left to right, the left deviation value
331        // * generally is above the line, the right value is below.
332        // *
333        // * @param start
334        // * starting point of the linestring
335        // * @param end
336        // * end point of the linestring
337        // * @param points
338        // * points in between
339        // * @return the maximum deviation
340        // */
341        // private double[] calcDeviation( double[] start, double[] end, List points ) {
342        //
343        // // extreme deviation to the left
344        // double d1 = 0.0;
345        // // extreme deviation to the right
346        // double d2 = 0.0;
347        // Iterator it = points.iterator();
348        //
349        // // eventually swap start and end point
350        // if ( start[0] > end[0] ) {
351        // double[] tmp = start;
352        // start = end;
353        // end = tmp;
354        // }
355        //
356        // if ( start[0] != end[0] ) {
357        // // label orientation is not completly vertical
358        // if ( start[1] != end[1] ) {
359        // // label orientation is not completly horizontal
360        // while ( it.hasNext() ) {
361        // double[] point = (double[]) it.next();
362        // double u = ( end[1] - start[1] ) / ( end[0] - start[0] );
363        // double x = ( u * u * start[0] - u * ( start[1] - point[1] ) + point[0] )
364        // / ( 1.0 + u * u );
365        // double y = ( x - start[0] ) * u + start[1];
366        // double d = getDistance( point, new double[] { x, y } );
367        // if ( y >= point[1] ) {
368        // // candidate for left extreme value
369        // if ( d > d1 ) {
370        // d1 = d;
371        // }
372        // } else if ( d > d2 ) {
373        // // candidate for right extreme value
374        // d2 = d;
375        // }
376        // }
377        // } else {
378        // // label orientation is completly horizontal
379        // while ( it.hasNext() ) {
380        // double[] point = (double[]) it.next();
381        // double d = point[1] - start[1];
382        // if ( d < 0 ) {
383        // // candidate for left extreme value
384        // if ( -d > d1 ) {
385        // d1 = -d;
386        // }
387        // } else if ( d > d2 ) {
388        // // candidate for left extreme value
389        // d2 = d;
390        // }
391        // }
392        // }
393        // } else {
394        // // label orientation is completely vertical
395        // while ( it.hasNext() ) {
396        // double[] point = (double[]) it.next();
397        // double d = point[0] - start[0];
398        // if ( d < 0 ) {
399        // // candidate for left extreme value
400        // if ( -d > d1 ) {
401        // d1 = -d;
402        // }
403        // } else if ( d > d2 ) {
404        // // candidate for right extreme value
405        // d2 = d;
406        // }
407        // }
408        // }
409        // return new double[] { d1, d2 };
410        // }
411    }