
deegree Webservices
Release 3.3.10

June 13, 2014

CONTENTS

1 Introduction 1
1.1 Characteristics of deegree WFS . 1
1.2 Characteristics of deegree WMS . 2
1.3 Characteristics of deegree WMTS . 2
1.4 Characteristics of deegree CSW . 2
1.5 Characteristics of deegree WPS . 3

2 Installation 5
2.1 System requirements . 5
2.2 Downloading . 5
2.3 Starting and stopping . 5

3 Getting started 7
3.1 Accessing deegree’s service console . 7
3.2 Example workspace 1: INSPIRE Network Services . 9
3.3 Example workspace 2: Utah Webmapping Services . 12
3.4 Example workspace 3: An ISO Catalogue Service setup . 15
3.5 Example workspace 4: Web Processing Service demo . 19

4 Configuration basics 23
4.1 The deegree workspace . 23
4.2 Location of the deegree workspace directory . 24
4.3 Structure of the deegree workspace directory . 25
4.4 Using the service console for managing resources . 27
4.5 Best practices for creating workspaces . 33

5 Web services 37
5.1 Web Feature Service (WFS) . 37
5.2 Web Map Service (WMS) . 44
5.3 Web Map Tile Service (WMTS) . 50
5.4 Catalogue Service for the Web (CSW) . 51
5.5 Web Processing Service (WPS) . 53
5.6 Metadata . 55
5.7 Service controller . 58

6 Feature stores 61
6.1 Features, feature types and application schemas . 61
6.2 Shape feature store . 63
6.3 Memory feature store . 65
6.4 Simple SQL feature store . 66
6.5 SQL feature store . 68

7 Tile stores 95
7.1 Tile stores, tile data sets and tile matrix sets . 95

i

7.2 GeoTIFF tile store . 97
7.3 File system tile store . 98
7.4 Remote WMS tile store . 98
7.5 Remote WMTS tile store . 99

8 Coverage stores 101
8.1 Raster . 101
8.2 MultiResolutionRaster . 102
8.3 Pyramid . 102

9 Metadata stores 105
9.1 Memory ISO Metadata store . 105
9.2 SQL ISO Metadata store . 106
9.3 SQL EBRIM/EO Metadata store . 108

10 Map layers 109
10.1 Common configuration . 109
10.2 Feature layers . 112
10.3 Tile layers . 114
10.4 Coverage layers . 114
10.5 Remote WMS layers . 115

11 Map themes 119
11.1 Standard themes . 119
11.2 Remote WMS themes . 120

12 Map styles 121
12.1 SLD/SE clarifications . 122
12.2 deegree specific extensions . 122
12.3 Example . 122

13 Server connections 125
13.1 JDBC connections . 125
13.2 Remote OWS connections . 126

14 Process providers 129
14.1 Java process provider . 129

15 Coordinate reference systems 147

16 deegree REST interface 149
16.1 Setting up the interface . 149
16.2 Detailed explanation . 149

17 Java modules and libraries 151
17.1 Java code and the classpath . 151
17.2 Checking available JARs . 152
17.3 Adding database modules . 152

ii

CHAPTER

ONE

INTRODUCTION

deegree webservices are implementations of the geospatial webservice specifications of the Open Geospatial Con-
sortium (OGC) and the INSPIRE Network Services. deegree webservices 3.2 includes the following services:

• Web Feature Service (WFS): Provides access to raw geospatial data objects

• Web Map Service (WMS): Serves maps rendered from geospatial data

• Web Map Tile Service (WMTS): Serves pre-rendered map tiles

• Catalogue Service for the Web (CSW): Performs searches for geospatial datasets and services

• Web Processing Service (WPS): Executes geospatial processes

With a single deegree webservices installation, you can set up one of the above services, all of them or even
multiple services of the same type. The remainder of this chapter introduces some notable features of the different
service implementations and provides learning trails for learning the configuration of each service.

1.1 Characteristics of deegree WFS

deegree WFS is an implementation of the OGC Web Feature Service specification. Notable features:

• Implements WFS standards 1.0.0, 1.1.0 and 2.0.0 1

• Fully transactional (even for rich data models)

• Supports KVP, XML and SOAP requests

• GML 2/3.0/3.1/3.2 output/input

• Support for GetGmlObject requests and XLinks

• High performance and excellent scalability

• On-the-fly coordinate transformation

• Designed for rich data models from the bottom up

• Backends support flexible mapping of GML application schemas to relational models

• ISO 19107-compliant geometry model: Complex geometries (e.g. non-linear curves)

• Advanced filter expression support based on XPath 1.0

• Supports numerous backends, such as PostGIS, Oracle Spatial, MS SQL Server, Shapefiles or GML instance
documents

Tip: In order to learn the setup and configuration of a deegree-based WFS, we recommend to read chapters
Installation and Getting started first. Check out Example workspace 1: INSPIRE Network Services and Example
workspace 2: Utah Webmapping Services for example deegree WFS configurations. Continue with Configuration
basics and Web Feature Service (WFS).

1 Passes OGC WFS CITE test suites (including all optional tests)

1

http://www.opengeospatial.org
http://www.opengeospatial.org
http://inspire.jrc.ec.europa.eu
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wfs

deegree Webservices, Release 3.3.10

1.2 Characteristics of deegree WMS

deegree WMS is an implementation of the OGC Web Map Service specification. Notable features:

• Implements WMS standards 1.1.1 and 1.3.0 2

• Extensive support for styling languages SLD/SE versions 1.0.0 and 1.1.0

• High performance and excellent scalability

• High quality rendering

• Scale dependent styling

• Support for SE removes the need for a lot of proprietary extensions

• Easy configuration of HTML and other output formats for GetFeatureInfo responses

• Uses stream-based data access, minimal memory footprint

• Nearly complete support for raster symbolizing as defined in SE (with some extensions)

• Complete support for TIME/ELEVATION and other dimensions for both feature and raster data

• Supports numerous backends, such as PostGIS, Oracle Spatial, Shapefiles or GML instance documents

• Can render rich data models directly

Tip: In order to learn the setup and configuration of a deegree-based WMS, we recommend to read chapters
Installation and Getting started first. Check out Example workspace 2: Utah Webmapping Services and Example
workspace 1: INSPIRE Network Services for example deegree WMS configurations. Continue with Configuration
basics and Web Map Service (WMS).

1.3 Characteristics of deegree WMTS

deegree WMTS is an implementation of the OGC Web Map Tile Service specification. Notable features:

• Implements Basic WMTS standard 1.0.0 (KVP)

• High performance and excellent scalability

• Supports different backends, such as GeoTIFF, remote WMS or file system tile image hierarchies

• Supports on-the-fly caching (using EHCache)

• Supports GetFeatureInfo for remote WMS backends

Tip: In order to learn the setup and configuration of a deegree-based WMTS, we recommend to read Installation
and Getting started first. Continue with Configuration basics and Web Map Tile Service (WMTS).

1.4 Characteristics of deegree CSW

deegree CSW is an implementation of the OGC Catalogue Service specification. Notable features:

• Implements CSW standard 2.0.2

• Fully transactional

2 Passes OGC WMS CITE test suites (including all optional tests)

2 Chapter 1. Introduction

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/cat

deegree Webservices, Release 3.3.10

• Supports KVP, XML and SOAP requests

• High performance and excellent scalability

• ISO Metadata Application Profile 1.0.0

• Pluggable and modular dataaccess layer allows to add support for new APs and backends

• Modular inspector architecture allows to validate records to be inserted against various criteria

• Standard inspectors: schema validity, identifier integrity, INSPIRE requirements

• Handles all defined queryable properties (for Dublin Core as well as ISO profile)

• Complex filter expressions

Tip: In order to learn the setup and configuration of a deegree-based CSW, we recommend to read Installation
and Getting started first. Check out Example workspace 3: An ISO Catalogue Service setup for an example
deegree CSW configuration. Continue with Configuration basics and Catalogue Service for the Web (CSW).

1.5 Characteristics of deegree WPS

deegree WPS is an implementation of the OGC Processing Service specification. Notable features:

• Implements WPS standard 1.0.0

• Supports KVP, XML and SOAP requests

• Pluggable process provider layer

• Easy-to-use API for implementing Java processes

• Supports all variants of input/output parameters: literal, bbox, complex (binary and xml)

• Streaming access for complex input/output parameters

• Processing of huge amounts of data with minimal memory footprint

• Supports storing of response documents/output parameters

• Supports input parameters given inline and by reference

• Supports RawDataOutput/ResponseDocument responses

• Supports asynchronous execution (with polling of process status)

Tip: In order to learn the setup and configuration of a deegree-based WPS, we recommend to read:ref:anchor-
installation and Getting started first. Check out Example workspace 4: Web Processing Service demo for an
example deegree WPS configuration. Continue with Configuration basics and Web Processing Service (WPS).

1.5. Characteristics of deegree WPS 3

http://www.opengeospatial.org/standards/wps

deegree Webservices, Release 3.3.10

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 System requirements

deegree webservices work on any platform with a compatible Java installation, including:

• Microsoft Windows

• Linux

• Mac OS X

• Solaris

Supported Java versions are OpenJDK version 7 (currently only available for Linux), Oracle Java 7 (JDK) and
Oracle Java 6 (JDK) 1. Other Java versions may work, but are not officially supported by the deegree development
team.

2.2 Downloading

deegree webservices downloads are available on the deegree home page. You have the choice of two flavors:

• ZIP: Multi-operating system package bundled with Apache Tomcat

• WAR: Plain Java Web Archive for deployment in an existing servlet container 2

Tip: If you are confused by the two options and unsure which version to pick, use the ZIP. Both variants contain
exactly the same deegree software, they only differ in packaging.

2.3 Starting and stopping

In order to run the ZIP version, extract it into a directory of your choice. Afterwards, fire up the included start
script for your operating system:

• Microsoft Windows: start-deegree-windows

• Linux/Solaris: start-deegree-linux.sh (when starting via a Desktop Environment such as Gnome,
choose “Run in terminal”)

• Mac OS X: start-deegree-osx.cmd

You should now see a terminal window on your screen with a lot of log messages:

1 Update 4 or better.
2 A Servlet 2.5 compliant web container is required. We recommend using the latest Apache Tomcat 7 release.

5

http://openjdk.java.net
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.deegree.org

deegree Webservices, Release 3.3.10

Figure 2.1: deegree webservices starting up

Tip: If you don’t see this terminal window, make sure that the java command is on the system path. You
can verify this by entering java -version at the command prompt. Also ensure that JAVA_HOME system
environment variable points to the correct installation directory of a compatible JDK.

You may minimize this window, but don’t close it as long as you want to be able to use the deegree webservices.
In order to check if the services are actually running, open http://localhost:8080 in your browser. You should see
the following page:

Figure 2.2: deegree webservices administration console

To shut deegree webservices down, switch back to the terminal window and press CTRL+C or simply close it.

Tip: If you want to run deegree webservices on system startup automatically, consider installing Apache Tomcat
7 as a system service. Afterwards, download the WAR version of deegree webservices and deploy it into your
Tomcat installation (e.g. by copying the WAR file into the webapps folder). Consult the Tomcat documentation
for more information and options.

6 Chapter 2. Installation

http://localhost:8080
http://tomcat.apache.org
http://tomcat.apache.org

CHAPTER

THREE

GETTING STARTED

In the previous chapter, you learned how to install and start deegree webservices. In this chapter, we will introduce
the deegree service console and learn how to use it to perform basic tasks such as downloading and activating
example configurations. In deegree terminology, a complete configuration for a deegree instance is called “deegree
workspace”.

The following chapters describe the structure and the aspects of the deegree workspace in detail. For the remainder
of this chapter, just think of a deegree workspace as a directory of configuration files that contains a complete
configuration for a deegree webservice instance. You may have multiple deegree workspaces on your machine,
but only a single workspace can be active.

3.1 Accessing deegree’s service console

The service console is a web-based administration interface for configuring your deegree webservices installation.
If deegree webservices are running on your machine, you can usually access the console from your browser via
http://localhost:8080

Figure 3.1: deegree webservices administration console

Tip: If you’re not running the ZIP version, but deployed the WAR version into a web container, you most probably
will have to use a different URL for accessing the console, e.g. http://localhost:8080/deegree-webservices-3.3.10.
The port number and webapp name depend on your installation/deployment details.

Tip: You can access the service console from other machines on your network by exchanging localhost with the
name or IP address of the machine that runs deegree webservices.

7

http://localhost:8080
http://localhost:8080/deegree-webservices-3.3.10

deegree Webservices, Release 3.3.10

For the remainder of the chapter, only the general section is relevant. The menu items in this section:

• workspaces: Download and activate example configurations

• proxy: Configure network proxy settings

• password: Set a password for accessing the service console

• module info: Display loaded deegree modules

• send requests: Send raw OGC web service requests

• see layers: Display WMS layers

3.1.1 Downloading and activating example workspaces

Click the workspaces link on the left:

Figure 3.2: Workspaces view

The bottom of the workspaces view lists example workspaces provided by the deegree project. You should see the
following items:

• deegree-workspace-inspire: Example workspace 1: INSPIRE Network Services

• deegree-workspace-utah: Example workspace 2: Utah Webmapping Services

• deegree-workspace-csw: Example workspace 3: An ISO Catalogue Service setup

• deegree-workspace-wps: Example workspace 4: Web Processing Service demo

Tip: If the machine running deegree webservices uses a proxy to access the internet and you don’t see any
available example configurations, you will probably have to configure the proxy settings. Ask your network
administrator for details and use the proxy link to setup deegree’s proxy settings.

If you click Import, the corresponding example workspace will be fetched from the artifact repository of the
deegree project and extracted in your deegree workspaces folder. Depending on the workspace and your internet
connection, this may take a while (the Utah workspace is the largest one and about 70 MB in size).

After downloading has completed, the new workspace will be listed in section “Available workspaces”:

You can now activate the downloaded workspace by clicking Start. Again, this may take a bit, as it may require
some initialization. The workspace will be removed from the list of inactive workspaces and displayed next to

8 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

Figure 3.3: Downloaded, but inactive workspace

“Active workspace:” (below the deegree logo). Your deegree instance is now running the configuration that is
contained in the downloaded workspace.

3.2 Example workspace 1: INSPIRE Network Services

This workspace is a basic INSPIRE View and Download Services setup. It contains a transactional WFS (2.0.0 and
1.1.0) configured for all Annex I Data Themes and a WMS (1.3.0 and 1.1.1) that is configured for three layers from
three Annex I Data Themes. The workspace contains some harmonized dutch base data for Administrative Units,
Cadastral Parcels and Addresses. The WFS is configured to behave as an INSPIRE Download service (Direct
Access) that delivers the base data as valid, harmonized INSPIRE GML and supports rich querying facilities.

Tip: This workspace is pre-configured to load harmonized INSPIRE features from GML files into memory, but
can easily be adapted to use PostGIS, Oracle Spatial or Microsoft SQL Server databases as storage backend (see
Auto-generating a mapping configuration and tables and SQL feature store).

After downloading and activating the “deegree-workspace-inspire” workspace, you can click the see layers link,
which opens a simple map client that displays a base map (not rendered by deegree, but loaded from the Open-
StreetMap servers).

Click the + on the right to see a list of available layers. You can now tick the INSPIRE layers offered by the
deegree WMS.

Tip: The map client is based on OpenLayers. Drag the map by holding the mouse button and moving your mouse.
Zoom using the controls on the left or with the mouse wheel. Alternatively, you can open a zoom rectangle by
holding the SHIFT key and clicking the mouse button in the map area.

Note that nothing will be rendered for layer AD.Address, as the configured storage (memory) doesn’t contain any
Address features yet. However, the workspace ships with example WFS-T requests that can be used to insert a few
harmonized INSPIRE Address features. Use the send requests link in the service console to access the example
requests (you may need to go back in your browser first):

Use the third drop-down menu to select an example request. Entries Insert_200.xml or Insert_110.xml can be
used to insert a small number of INSPIRE Address features using WFS-T insert requests:

Click Send to execute the request. After successful insertion, the internal storage contains a few addresses, and
you may want to move back to the layer overview (see layers). If you activate layer AD.Address this time, the
newly inserted features will be rendered by the deegree WMS (look for them in the area of Enkhuizen):

3.2. Example workspace 1: INSPIRE Network Services 9

http://openlayers.org/

deegree Webservices, Release 3.3.10

Figure 3.4: Map client showing base map

Figure 3.5: INSPIRE layers rendered by the deegree WMS

Figure 3.6: WFS-T example requests

10 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

Figure 3.7: Ad.Address layer after insertion of example Address features

The example requests also contain a lot of query examples, e.g. requesting of INSPIRE Addresses by street name:

Figure 3.8: WFS query examples

Tip: This workspace is a good starting point for implementing scalable and compliant INSPIRE View and/or
Download Services. It can easily be adapted to use PostGIS, Oracle Spatial or Microsoft SQL Server databases
as storage backend (see Auto-generating a mapping configuration and tables and SQL feature store). Other things
you may want to adapt is the configuration of Map layers, the Map styles or the reported Metadata.

Tip: You can also delete features using WFS transactions. After deletion, they will not be rendered anymore as
WMS and WFS operate on the same feature store.

3.2. Example workspace 1: INSPIRE Network Services 11

deegree Webservices, Release 3.3.10

3.3 Example workspace 2: Utah Webmapping Services

The Utah example workspace contains a web mapping setup based on data from the state of Utah. It contains a
WMS configuration (1.3.0 and 1.1.1) with some raster and vector layers and some nice render styles. Raster data
is read from GeoTIFF files, vector data is backed by shapefiles. Additionally, a WFS (2.0.0, 1.1.0 and 1.0.0) is
configured that allows to access the raw vector data in GML format.

After downloading and activating the “deegree-workspace-utah” workspace, you can click on the see layers link,
which opens a simple map client that displays a base map (not rendered by deegree, but loaded from the Open-
StreetMap servers).

Figure 3.9: Map client showing base map

Click the + on the right to see a list of available layers. Tick the ones you want to see. They will be rendered by
your deegree webservices instance.

Figure 3.10: Selecting WMS layers to be displayed

Tip: The map client is based on OpenLayers. Drag the map by holding the mouse button and moving your mouse.
Zoom using the controls on the left or with the mouse wheel. Alternatively, you can open a zoom rectangle by
holding the SHIFT key and clicking the mouse button in the map area.

12 Chapter 3. Getting started

http://openlayers.org/

deegree Webservices, Release 3.3.10

Figure 3.11: Exploring Utah layers

In order to send requests against the WFS, you may use the send requests link in the service console (you may
need to go back in your browser first). A simple interface for sending XML requests will open up. This interface
is meant for accessing OGC web services on the protocol level and contains some reasonable example requests.

Figure 3.12: Sending example requests

Select one of the example requests from the third drop-down menu and click Send. The server response will be
displayed in the lower section.

Tip: WFS request types and their format are specified in the OGC Web Feature Service specification.

Tip: Instead of using the built-in layer preview or the generic OGC client, you may use any compliant OGC client
for accessing the WMS and WFS. Successfully tested desktop clients include Quantum GIS (install WFS plugin
for accessing WFS), uDig, OpenJUMP and deegree iGeoDesktop. The service address to enter in your client is:
http://localhost:8080/services.

3.3. Example workspace 2: Utah Webmapping Services 13

http://www.opengeospatial.org/standards/wfs
http://localhost:8080/services

deegree Webservices, Release 3.3.10

Figure 3.13: Sending example requests

Figure 3.14: Quantum GIS displaying a WMS layer from the Utah workspace

14 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

3.4 Example workspace 3: An ISO Catalogue Service setup

This workspace contains a catalogue service (CSW) setup that complies to the ISO Application Profile. After
downloading and starting it, you will have to setup tables in a PostGIS database first. You will need to have an
empty and spatially-enabled PostGIS database handy that can be accessed from the machine that runs deegree
webservices.

Tip: Instead of PostGIS, you can also use the workspace with an Oracle Spatial or a Microsoft SQL Server
database. In order to enable support for these databases, see Adding database modules.

After downloading and starting the workspace, some errors will be indicated (red exclamation marks):

Figure 3.15: Initial startup of deegree-workspace-csw

Don’t worry, this is just because we’re missing the correct connection information to connect to our database.
We’re going to fix that right away. Click server connections -> jdbc:

Figure 3.16: JDBC connection view

Click Edit:

Make sure to enter the correct connection parameters and click Save. You should now have a working connection

3.4. Example workspace 3: An ISO Catalogue Service setup 15

deegree Webservices, Release 3.3.10

Figure 3.17: Editing the JDBC resource configuration file

to your database, and the exclamation mark for conn1 should disappear. Click Reload to force a full reinitializa-
tion of the workspace:

Figure 3.18: Reinitializing the workspace

The indicated problems are gone now, but we still need to create the required database tables. Change to the
metadata store view (data stores -> metadata) and click Setup tables:

In the next view, click Execute:

If all went well, you should now have a working, but empty CSW setup. You can connect to the CSW with
compliant clients or use the send requests link to send raw CSW requests to the service. The workspace comes
with some suitable example requests. Use the third drop-down menu to select an example request. Entry com-
plex_insert.xml can be used to insert some ISO example records using a CSW transaction request:

Click Send. After successful insertion, some records have been inserted into the CSW (respectively the database).
You may want to explore other example requests as well, e.g. for retrieving records:

16 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

Figure 3.19: Metadata store view

Figure 3.20: Creating tables for storing ISO metadata records

Figure 3.21: After table creation

3.4. Example workspace 3: An ISO Catalogue Service setup 17

deegree Webservices, Release 3.3.10

Figure 3.22: Choosing example requests

Figure 3.23: Other example CSW requests

18 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

3.5 Example workspace 4: Web Processing Service demo

This workspace contains a WPS setup with simple example processes and example requests. It’s a good starting
point for learning the WPS protocol and the development of WPS processes. After downloading and starting it,
click send requests in order to find example requests that can be sent to the WPS. Use the third drop-down menu
to select an example request:

Figure 3.24: Choosing a WPS example request

Click Send to fire it against the WPS:

Figure 3.25: Sending an example request against the WPS

The response of the WPS will be displayed in the lower section:

Besides the geometry example processes, the parameter example process and example requests may be interesting
to developers who want to learn development of WPS processes with deegree webservices:

The process has four input parameters (literal, bounding box, xml and binary) that are simply piped to four corre-
sponding output parameters. There’s practically no process logic, but the included example requests demonstrate
many of the possibilities of the WPS protocol:

• Input parameter passing variants (inline vs. by reference)

3.5. Example workspace 4: Web Processing Service demo 19

deegree Webservices, Release 3.3.10

Figure 3.26: WPS response is displayed

Figure 3.27: Example requests for the parameter demo process

20 Chapter 3. Getting started

deegree Webservices, Release 3.3.10

• Output parameter handling (inline vs. by reference)

• Response variants (ResponseDocument vs. RawData)

• Storing of response documents

• Asynchronous execution

Figure 3.28: Example requests for the ParameterDemo process

Tip: WPS request types and their format are specified in the OGC Web Processing Service specification.

Tip: In order to add your own processes, see Web Processing Service (WPS) and Process providers.

3.5. Example workspace 4: Web Processing Service demo 21

http://www.opengeospatial.org/standards/wps

deegree Webservices, Release 3.3.10

22 Chapter 3. Getting started

CHAPTER

FOUR

CONFIGURATION BASICS

In the previous chapter, you learned how to access and log in to the deegree service console and how to download
and activate example workspaces. This chapter introduces the basic concepts of deegree webservices configura-
tion:

• The deegree workspace and the active workspace directory

• Workspace files and resources

• Workspace directories and resource types

• Resource identifiers and dependencies

• Usage of the service console for workspace configuration

The final section of this chapter describes recommended practices for creating your own workspace. The remain-
ing chapters of the documentation describe the individual workspace resource formats in detail.

4.1 The deegree workspace

The deegree workspace is the modular, resource-oriented and extensible configuration concept used by deegree
webservices. The following diagram shows the different types of resources that it contains:

Figure 4.1: Configuration aspects of deegree workspaces

23

deegree Webservices, Release 3.3.10

The following table provides a short description of the different types of workspace resources:

Resource type Description
Web Services Web services (WFS, WMS, WMTS, CSW, WPS)
Data Stores (Coverage) Coverage (raster) data access (GeoTIFFs, raster pyramids, etc.)
Data Stores (Feature) Feature (vector) data access (Shapefiles, PostGIS, Oracle Spatial, etc.)
Data Stores (Metadata) Metadata record access (ISO records stored in PostGIS, Oracle, etc.)
Data Stores (Tile) Pre-rendered map tiles (GeoTIFF, image hierarchies in the file system, etc.)
Map Layers (Layer) Map layers based on data stores and styles
Map Layers (Style) Styling rules for features and coverages
Map Layers (Theme) Layer trees based on individual layers
Processes Geospatial processes for the WPS
Server connections (JDBC) Connections to SQL databases
Server connections (remote OWS) Connections to remote OGC web services

Physically, every configured resource corresponds to an XML configuration file in the active workspace directory.

4.2 Location of the deegree workspace directory

The active deegree workspace is part of the .deegree directory which stores a few global configuration files
along with the workspace. The location of this directory depends on your operating system.

4.2.1 Linux/Solaris/Mac OS X

On UNIX-like systems (Linux/Solaris/MacOS X), deegree’s configuration files are located in folder
$HOME/.deegree/. Note that $HOME is determined by the user that started the web application container
that runs deegree. If you started the ZIP version of deegree as user “kelvin”, then the directory will be something
like /home/kelvin/.deegree.

Tip: In order to use a different folder for deegree’s configuration files, you can set the system environment
variable DEEGREE_WORKSPACE_ROOT. Note that the user running the web application container must have
read/write access to this directory.

4.2.2 Windows

On Windows, deegree’s configuration files are located in folder %USERPROFILE%/.deegree/. Note
that %USERPROFILE% is determined by the user that started the web application container that runs dee-
gree. If you started the ZIP version of deegree as user “kelvin”, then the directory will be something like
C:\Users\kelvin\.deegree or C:\Dokumente und Einstellungen\kelvin\.deegree.

Tip: In order to use a different folder for deegree’s configuration files, you can set the system environment
variable DEEGREE_WORKSPACE_ROOT. Note that the user running the web application container must have
read/write access to this directory.

4.2.3 Global configuration files and the active workspace

If you downloaded all four example workspaces (as described in Getting started), set a console password and the
proxy parameters, your .deegree directory will look like this:

As you see, this .deegree directory contains four subdirectories. Every subdirectory corresponds to a dee-
gree workspace. Besides the configuration files inside the workspace, three global configuration files exist:
Note that only a single workspace can be active at a time. The information on the active one is stored in file
webapps.properties.

24 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

Figure 4.2: Example .deegree directory

File name Function
<subdirectory> Workspace directory
console.pw Password for services console
proxy.xml Proxy settings
webapps.properties Selects the active workspace

Table 4.1: Global configuration files and workspace directories

Tip: Usually, you don’t need to care about the three files that are located at the top level of this directory. The
service console creates and modifies them as required (e.g. when switching to a different workspace). In order
to create a deegree webservices setup, you will need to create or edit resource configuration files in the active
workspace directory. The remaining documentation will always refer to files in the (active) workspace directory.

Tip: When multiple deegree webservices instances run on a single machine, every instance can use a different
workspace. The file webapps.properties stores the active workspace for every deegree webapp separately.

4.3 Structure of the deegree workspace directory

The workspace directory is a container for resource files with a well-defined directory structure. When deegree
starts up, the active workspace directory is determined and the following subdirectories are scanned for XML
resource configuration files:

Directory Resource type
services/ Web services
datasources/coverage/ Coverage Stores
datasources/feature/ Feature Stores
datasources/metadata/ Metadata Stores
datasources/tile/ Tile Stores
layers/ Map Layers (Layer)
styles/ Map Layers (Style)
themes/ Map Layers (Theme)
processes/ Processes
jdbc/ Server Connections (JDBC)
datasources/remoteows/ Server Connections (Remote OWS)

4.3. Structure of the deegree workspace directory 25

deegree Webservices, Release 3.3.10

A workspace directory may contain additional directories to provide additional files along with the resource con-
figurations. The major difference is that these directories are not scanned for resource files. Some common ones
are:

Directory Used for
appschemas/ GML application schemas
data/ Datasets (GML, GeoTIFF, ...)
manager/ Example requests (for the generic client)

4.3.1 Workspace files and resources

In order to clarify the relation between workspace files and resources, let’s have a look at an example:

Figure 4.3: Example workspace directory

As noted, deegree scans the well-known resource directories for XML files (*.xml) on startup (note that it will
omit directory manager, as it is not a well-known resource directory). For every file found, deegree will check
the type of configuration format (by determining the name of the XML root element). If it is a recognized format,
deegree will try to create and initialize a corresponding resource. For the example, this results in the following
setup:

• A metadata store with id iso19115

• A JDBC connection pool with id conn1

• A web service with id csw

The individual XML resource formats and their options are described in the later chapters of the documentation.

Tip: You may wonder why the main.xml and metadata.xml files are not considered as web service resource
files. These two filenames are reserved and treated specifically. See Web services for details.

26 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

Tip: The configuration format has to match the workspace subdirectory, e.g. metadata store configuration files
are only considered when they are located in datasources/metadata.

4.3.2 Resource identifiers and dependencies

It has already been hinted that resources have an identifier, e.g. for file jdbc/conn1.xml a JDBC connection
pool with identifier conn1 is created. You probably have guessed that the identifier is derived from the file name
(file name minus suffix), but you may wonder what purpose the identifier serves. The identifier is used for wiring
resources. For example, an ISO metadata store resource requires a JDBC pool, because it provides the actual
connections to the SQL database. Therefore, the corresponding resource configuration format has an element to
specify it:

Example for wiring workspace resources

<ISOMetadataStore configVersion="3.2.0" xmlns="http://www.deegree.org/datasource/metadata/iso19115">

<!-- [1] Identifier of JDBC connection -->
<JDBCConnId>conn1</JDBCConnId>

[...]

</ISOMetadataStore>

In this example, the ISO metadata store is wired to JDBC connection pool conn1. Many deegree resource
configuration files contain such references to dependent resources. Some resources perform auto-wiring. For
example, every CSW instance needs to connect to a metadata store for accessing stored metadata records. If the
CSW configuration omits the reference to the metadata store, it is assumed that there’s exactly one metadata store
defined in the workspace and deegree will automatically connect the CSW to this store.

Tip: The required dependencies are specific to every type of resource and are documented for each resource
configuration format.

4.4 Using the service console for managing resources

As an alternative to dealing with the workspace resource configuration files directly on the filesystem, you can
also use the service console for this task. The service console has a corresponding menu entry for every type of
workspace resource. All resource menu entries are grouped in the lower menu on the left:

Although the console offers additional functionality for some resource types, the basic management of resources
is always identical.

4.4.1 Displaying configured resources

In order to display the configured workspace resources of a certain type, click on the corresponding menu entry.
The following screenshot shows the metadata store resources in deegree-workspace-csw:

The right part of the window displays a table with all configured metadata store resources. In this case, the
workspace contains a single resource with identifier “iso19115” which is in status “On”.

4.4.2 Deactivating a resource

The “Deactivate” link allows to turn off a resource temporarily (while keeping the configuration):

4.4. Using the service console for managing resources 27

deegree Webservices, Release 3.3.10

Figure 4.4: Workspace resource menu entries

Figure 4.5: Displaying metadata store resources

Figure 4.6: Deactivate action

28 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

After clicking on “Deactivate”, the status of the resource will be “Off”, and the “Deactivate” link will change to
“Activate”. Also, the “Reload” link at the top will turn red to notify that there may be changes that need to be
propagated to dependent resources:

Figure 4.7: Deactivated a resource

Tip: When a resource is being deactivated, the suffix of the corresponding configuration file is changed to
”.ignore”. Reactivating changes the suffix back to ”.xml”.

4.4.3 Editing a resource

By clicking on the “Edit” link, you can edit the corresponding XML configuration inside your browser:

Figure 4.8: Edit action

The XML configuration will be displayed:

You can now perform configuration changes in the text area and click on “Save”. Or click any of the links:

• Display Schema: Displays the XML schema file for the resource configuration format.

• Cancel: Discards any changes.

4.4. Using the service console for managing resources 29

deegree Webservices, Release 3.3.10

Figure 4.9: Editing a resource configuration

• Turn on highlighting: Perform syntax highlighting.

If there are no (syntactical) errors in the configuration, the “Save” link will take you back to the corresponding
resource view. Before actually saving the file, the service console will perform an XML validation of the file and
display any syntactical errors:

Figure 4.10: Displaying a syntax error

In this case, the mandatory “JDBCConnId” element was removed, which violates the configuration schema. This
needs to be corrected, before “Save” will actually save the file to the workspace directory.

4.4.4 Deleting a resource

The “Delete” link will deactivate the resource and delete the corresponding configuration file from the workspace:

30 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

Figure 4.11: Delete action

4.4.5 Creating a new resource

In order to add a new resource, enter a new identifier in the text field, select a resource sub-type from the drop-down
and click on “Create new”:

Figure 4.12: Adding a WMS resource with identifier “mywms”

The next steps depend on the type of resource, but generally you have to choose between different options and the
result will be a new resource configuration file in the workspace.

4.4.6 Displaying error messages

One of the most helpful features of the console is that it can help to detect and fix errors in a workspace setup. For
example, if you delete (or deactivate) JDBC connection “conn1” in deegree-workspace-csw and click “[Reload]”,
you will see the following:

The red exclamation marks near “services” and “metadata” show that these resource categories have resources
with errors. Let’s click on the metadata link to see what’s going on:

The metadata resource view reveals that the metadata store “iso19115” has an error. Clicking on “Show errors”
leads to:

4.4. Using the service console for managing resources 31

deegree Webservices, Release 3.3.10

Figure 4.13: Errors in resource categories

Figure 4.14: Resource “iso19115” has an error

Figure 4.15: Details on the problem with “iso19115”

32 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

The error message gives an important hint: “No JDBC connection pool with id ‘conn1’ defined.” deegree was
unable to initialize the metadata store, because it refers to a JDBC connection pool “conn1”. You may wonder
what the error in the services category is about:

Figure 4.16: Details on the problem with “csw”

As you see, the problem with the service resource (“There is no MetadataStore configured, ensure that exactly one
store is available!) is actually a consequence of the other issue. Because deegree couldn’t initialize the metadata
store, it was also unable to start up the CSW correctly. If you add a new JDBC connection “conn1” and click on
“[Reload]”, both problems should disappear.

4.4.7 Resource type specific actions

In addition to the common management functionality, some resource views offer additional actions. This is de-
scribed in the corresponding chapters, but here’s a short overview:

• Web Services: Display service capabilities (“Capabilities”), edit service metadata (“Edit metadata”), edit
controller configuration (“Edit global config”)

• Feature Stores: Display feature types and number of stored features (“Info”), Import GML feature collec-
tions (“Loader”), Mapping wizard (“Create new” SQL feature store)

• Metadata Stores: Import metadata sets (“Loader”), create database tables (“Setup tables”)

• Server Connections (JDBC): Test database connection (“Test”)

4.5 Best practices for creating workspaces

This section provides some hints for creating a deegree workspace.

4.5.1 Start from example or from scratch

For creating your own workspace, you have two options. Option 1 is to use an existing workspace as a template
and adapt it to your needs. Option 2 is to start from scratch, using an empty workspace. Adapting an existing
workspace makes a lot of sense if your use-case is close to the scenario of the workspace. For example, if you
want to set up INSPIRE View and Download Services, it is a good option to use Example workspace 1: INSPIRE
Network Services as a starting point.

In order to create a new workspace, simply create a new directory in the .deegree directory.

4.5. Best practices for creating workspaces 33

deegree Webservices, Release 3.3.10

Figure 4.17: Creating the new workspace myscenario

Afterwards, switch to the new workspace using the services console, as described in Downloading and activating
example workspaces.

4.5.2 Find out which resources you need

The first step is to identify the types of workspace resources that you need for your use-case. You probably know
already which types of services your setup requires. The next step is to identify the dependencies for every service
by having a look at the respective chapter in the documentation. Let’s say you want a setup with a transactional
WFS, a WMS and a CSW:

• A WFS instance requires 1..n feature stores

• A WMS instance requires 1..n themes

• A CSW instance requires a single metadata store

Now you have to dig deeper: What kinds of feature stores exist? Maybe you will find out that what you want
is an SQL feature store. So you read the respective part of the documentation and see that an SQL feature store
requires a JDBC connection pool resource. Do the same research for the WMS dependencies. A WMS depends
on a theme. Find out what a theme is and what it requires. In short, you have to answer the following questions
for every encountered resource:

• What does resource do?

• How is it configured?

• On which resources does this resource depend?

At the end of this process you should know about the resources that you will have to configure for your setup.

Tip: Alternatively, you can approach the resources question bottom-up. Let’s say you have your data ready in
a PostGIS database. You want to visualize it using a WMS. So you would require a JDBC resource pool that
connects to your database. You need a simple SQL feature store (or an SQL feature store) that uses the new
connection pool. You create one or more feature layers that are wired to the feature store and a theme based on
the layers. At the end of the chain is the WMS resource which has to be configured to use the theme resource.
Rendering styles can be created later (references have to be added to the layers configuration).

34 Chapter 4. Configuration basics

deegree Webservices, Release 3.3.10

4.5.3 Use a validating XML editor

All deegree XML configuration files have a corresponding XML schema, which allows to detect syntactical errors
easily. The editor built into the services console performs validation when you save a configuration file. If the
contents is not valid according to the schema, the file will not be saved, but an error message will be displayed:

Figure 4.18: The services console displays an XML syntax error

If you prefer to use a different editor for editing deegree’s configuration files, it is highly recommended to choose
a validating XML editor. Successfully tested editors are Eclipse and Altova XML Spy, but any schema-aware
editor should work.

Tip: In case you are able to understand XML schema, you can also use the schema file to find out about the
available config options. deegree’s schema files are hosted at http://schemas.deegree.org.

4.5.4 Check the resource status and error messages

As pointed out in Displaying error messages, the service console indicates errors if resources cannot be initialized.
Here’s an example:

Figure 4.19: Error message

4.5. Best practices for creating workspaces 35

http://schemas.deegree.org

deegree Webservices, Release 3.3.10

In this case, it was not possible to initialize the JDBC connection (and the resources that depend on it). You can
spot resource categories and resources that have errors easily, as they have a red exclamation mark. Click on the
respective resource level and on “Errors” near the broken resource to see the error message. After fixing the error,
click on “Reload” to re-initialize the workspace. If your fix was successful, the exclamation mark will be gone.

Additional information can be found in the deegree log. If you’re running the ZIP version, switch to the terminal
window. When initializing workspace resources, information on every resource will be logged, along with error
messages.

Figure 4.20: Log messages in the deegree log

Tip: If you deployed the WAR version, the location of the deegree log depends on your web application container.
For Tomcat, you will find it in file catalina.out in the log/ directory.

Tip: More logging can be activated by adjusting file log4j.properties in the /WEB-INF/classes/
directory of the deegree webapplication.

36 Chapter 4. Configuration basics

CHAPTER

FIVE

WEB SERVICES

This chapter describes the configuration of web service resources. You can access this configuration level by
clicking the web services link in the administration console. The corresponding configuration files are located in
the services/ subdirectory of the active deegree workspace directory.

Figure 5.1: Web services are the top-level resources of the deegree workspace

Tip: The identifier of a web service resource has a special purpose. If your deegree instance can be
reached at http://localhost:8080/deegree-webservices, the common endpoint for connecting
to your services is http://localhost:8080/deegree-webservices/services. However, if you
define multiple service resources of the same type in your workspace (e.g. two WMS instances with identi-
fiers wms1 and wms2), you cannot use the common URL, as deegree cannot determine the targeted WMS in-
stance from the request. In this case, simply append the resource identifier to the common endpoint URL (e.g.
http://localhost:8080/deegree-webservices/services/wms2) to choose the service resource
that you want to connect to explicitly.

5.1 Web Feature Service (WFS)

A deegree WFS setup consists of a WFS configuration file and any number of feature store configuration files.
Feature stores provide access to the actual data (which may be stored in any of the supported backends, e.g. in
shapefiles or spatial databases such as PostGIS or Oracle Spatial). In transactional mode (WFS-T), feature stores
are also used for modification of stored features:

37

deegree Webservices, Release 3.3.10

Figure 5.2: A WFS resource is connected to any number of feature store resources

5.1.1 Minimal example

The only mandatory option is QueryCRS, therefore, a minimal WFS configuration example looks like this:

WFS config example 1: Minimal configuration

<deegreeWFS configVersion="3.2.0"
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wfs
http://schemas.deegree.org/services/wfs/3.2.0/wfs_configuration.xsd">

<QueryCRS>urn:ogc:def:crs:EPSG::4258</QueryCRS>

</deegreeWFS>

This will create a deegree WFS with the feature types from all configured feature stores in the workspace and
urn:ogc:def:crs:EPSG::4258 as coordinate system for returned GML geometries.

5.1.2 More complex example

A more complex configuration example looks like this:

38 Chapter 5. Web services

deegree Webservices, Release 3.3.10

WFS config example 2: More complex configuration

<deegreeWFS configVersion="3.2.0"
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wfs
http://schemas.deegree.org/services/wfs/3.2.0/wfs_configuration.xsd">

<SupportedVersions>
<Version>2.0.0</Version>
<Version>1.1.0</Version>

</SupportedVersions>

<FeatureStoreId>inspire-ad</FeatureStoreId>

<EnableTransactions idGen="UseExisting">true</EnableTransactions>
<EnableResponseBuffering>false</EnableResponseBuffering>

<QueryCRS>urn:ogc:def:crs:EPSG::4258</QueryCRS>
<QueryCRS>urn:ogc:def:crs:EPSG::4326</QueryCRS>
<QueryMaxFeatures>-1</QueryMaxFeatures>
<QueryCheckAreaOfUse>false</QueryCheckAreaOfUse>

<GMLFormat gmlVersion="GML_32">
<MimeType>application/gml+xml; version=3.2</MimeType>
<MimeType>text/xml; subtype=gml/3.2.1</MimeType>
<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>
<GetFeatureResponse xmlns:gml="http://www.opengis.net/gml/3.2">

<ContainerElement>gml:FeatureCollection</ContainerElement>
<FeatureMemberElement>gml:featureMember</FeatureMemberElement>
<AdditionalSchemaLocation>http://www.opengis.net/gml/3.2 http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemaLocation>
<DisableStreaming>false</DisableStreaming>

</GetFeatureResponse>
</GMLFormat>

</deegreeWFS>

5.1.3 Configuration overview

The deegree WFS config file format is defined by schema file http://schemas.deegree.org/services/wfs/3.2.0/wfs_configuration.xsd.
The root element is deegreeWFS and the config attribute must be 3.2.0. The following table lists all available
configuration options (complex ones contain nested options themselves). When specifiying them, their order must
be respected.

Option Cardinality Value Description
SupportedVersions 0..1 Complex Activated OGC protocol versions, default: all
FeatureStoreId 0..n String Feature stores to attach, default: all
EnableTransactions 0..1 Complex Enable transactions (WFS-T operations), default: false
EnableResponseBuffering 0..1 Boolean Enable response buffering (expensive), default: false
QueryCRS 1..n String Announced CRS, first element is the default CRS
QueryMaxFeatures 0..1 Integer Limit of features returned in a response, default: 15000
QueryCheckAreaOfUse 0..1 Boolean Check spatial query constraints against CRS area, default: false
StoredQuery 0..n String File name of StoredQueryDefinition
GMLFormat 0..n Complex GML format configuration
CustomFormat 0..n Complex Custom format configuration

The remainining sections describe these options and their sub-options in detail.

5.1. Web Feature Service (WFS) 39

http://schemas.deegree.org/services/wfs/3.2.0/wfs_configuration.xsd

deegree Webservices, Release 3.3.10

5.1.4 General options

• SupportedVersions: By default, all implemented WFS protocol versions (1.0.0, 1.1.0 and 2.0.0) will
be activated. You can control offered WFS protocol versions using element SupportedVersions.
This element allows any combination of the child elements <Version>1.0.0</Version>,
<Version>1.1.0</Version> and <Version>2.0.0</Version>.

• FeatureStoreId: By default, all feature stores in your deegree workspace will be used for serving
feature types. In some cases, this may not be what you want, e.g. because you have two different WFS
instances running, or you don’t want all feature types used in your WMS for rendering to be available via
your WFS. Use the FeatureStoreId option to explicitly set the feature stores that this WFS should use.

• EnableResponseBuffering: By default, WFS responses are directly streamed to the client. This
is very much recommended and even a requirement for transferring large responses efficiently. The only
drawback happens if exceptions occur, after a partial response has already been transferred. In this case, the
client will receive part payload and part exception report. By specifying false here, you can explicitly
force buffering of the full response, before it is written to the client. Only if the full response could be gen-
erated successfully, it will be transferred. If an exception happens at any time the buffer will be discarded,
and an exception report will be sent to the client. Buffering is performed in memory, but switches to a temp
file in case the buffer grows bigger than 1 MiB.

• QueryCRS: Coordinate reference systems for returned geometries. This element can be specified multiple
times, and the WFS will announce all CRS in the GetCapabilities response (except for WFS 1.0.0 which
does not officially support using multiple coordinate reference systems). The first element always specifies
the default CRS (used when no CRS parameter is present in a request).

• QueryMaxFeatures: By default, a maximum number of 15000 features will be returned for a single
GetFeature request. Use this option to override this setting. A value of -1 means unlimited.

• QueryCheckAreaOfUse: By default, spatial query constraints are not checked with regard to the area
of validity of the CRS. Set this option to true to enforce this check.

5.1.5 Transactions

By default, WFS-T requests will be rejected. Setting the EnableTransactions option to true will enable
transaction support. This option has the optional attribute idGenModewhich controls how ids of inserted features
(the values in the gml:id attribute) are treated. There are three id generation modes available:

• UseExisting: The original gml:id values from the input are stored. This may lead to errors if the provided
ids are already in use.

• GenerateNew (default): New and unique ids are generated. References in the input GML (xlink:href) that
point to a feature with an reassigned id are fixed as well, so reference consistency is maintained.

• ReplaceDuplicate: The WFS will try to use the original gml:id values that have been provided in the input.
In case a certain identifier already exists in the backend, a new and unique identifier will be generated.
References in the input GML (xlink:href) that point to a feature with an reassigned id are fixed as well, so
reference consistency is maintained.

Hint: Currently, transactions can only be enabled if your WFS is attached to a single feature store.

Hint: Not every feature store implementation supports transactions, so you may encounter that transactions are
rejected, even though you activated them in the WFS configuration.

Hint: The details of the id generation depend on the feature store implementation/configuration.

Hint: In a WFS 1.1.0 insert, the id generation mode can be overridden by attribute idGenMode of the Insert
element. WFS 1.0.0 and WFS 2.0.0 don’t support to specify the id generation mode on a request basis.

40 Chapter 5. Web services

deegree Webservices, Release 3.3.10

5.1.6 Adapting GML output formats

By default, a deegree WFS will offer GML 2, 3.0, 3.1, and 3.2 as output formats and announce those formats in the
GetCapabilities responses (except for WFS 1.0.0, as this version of the standard has no means of announcing other
formats than GML 2). The element for GetFeature responses is wfs:FeatureCollection, as mandated by
the WFS specification.

In some cases, you may want to alter aspects of the offered output formats. For example, if you want your WFS to
serve a specific application schema (e.g. INSPIRE Data Themes), you should restrict the announced GML versions
to the one used for the application schema. These and other output-format related aspects can be controlled by
element GMLFormat.

Example for WFS config option GMLFormat

<GMLFormat gmlVersion="GML_32">

<MimeType>text/xml; subtype=gml/3.2.1</MimeType>

<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>

<GetFeatureResponse>
<ContainerElement xmlns:gml="http://www.opengis.net/gml/3.2">gml:FeatureCollection</ContainerElement>
<FeatureMemberElement xmlns:gml="http://www.opengis.net/gml/3.2">gml:featureMember</FeatureMemberElement>
<AdditionalSchemaLocation>

http://www.opengis.net/gml/3.2 http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemaLocation>
<DisableDynamicSchema>true</DisableDynamicSchema>
<DisableStreaming>false</DisableStreaming>
<DecimalCoordinateFormatter places="8"/>

</GetFeatureResponse>

</GMLFormat>

The GMLFormat option has the following sub-options:

Option Cardi-
nality

Value Description

@gmlVersion 1..1 String GML version (GML_2, GML_30,
GML_31 or GML_32)

MimeType 1..n String Mime types associated with this format
configuration

GenerateBoundedByForFeatures 0..1 Boolean Forces output of gml:boundedBy property
for every feature

GetFeatureResponse 0..1 Com-
plex

Options for controlling GetFeature
responses

DecimalCoordinateFormatter/
CustomCoordinateFormatter

0..1 Com-
plex

Controls the formatting of geometry
coordinates

Basic GML format options

• @gmlVersion: This attribute defines the GML version (GML_2, GML_30, GML_31 or GML_32)

• MimeType: Mime types associated with this format configuration (and announced in GetCapabilities)

• GenerateBoundedByForFeatures: By default, the gml:boundedBy property will only be ex-
ported for the member features if the feature store provides it. By setting this option to true, the WFS
will calculate the envelope and include it as a gml:boundedBy property. Please note that this setting

5.1. Web Feature Service (WFS) 41

deegree Webservices, Release 3.3.10

does not affect the inclusion of the gml:boundedBy property for on the feature collection level (see
DisableStreaming for that).

GetFeature response settings

Option GetFeatureResponse has the following sub-options:

Option Cardi-
nality

Value Description

ContainerElement 0..1 QName Qualified root element name, default: wfs:FeatureCollection
FeatureMemberEle-
ment

0..1 QName Qualified feature member element name, default:
gml:featureMember

Addition-
alSchemaLocation

0..1 String Added to xsi:schemaLocation attribute of
wfs:FeatureCollection

DisableDynamic-
Schema

0..1 Com-
plex

Controls DescribeFeatureType strategy, default: regenerate
schema

DisableStreaming 0..1 Boolean Disables output streaming, include numberOfFeature
information/gml:boundedBy

• ContainerElement: By default, the container element of a GetFeature response is
wfs:FeatureCollection. Using this option, you can specify an alternative element name. In
order to bind the namespace prefix, use standard XML namespace mechanisms (xmlns attribute). This
option is ignored for WFS 2.0.0.

• FeatureMemberElement: By default, the member features are included in gml:featureMember
(WFS 1.0.0/1.1.0) or wfs:member elements (WFS 2.0.0). Using this option, you can specify an alternative
element name. In order to bind the namespace prefix, use standard XML namespace mechanisms (xmlns
attribute). This option is ignored for WFS 2.0.0.

• AdditionalSchemaLocation: By default, the xsi:schemaLocation attribute in a GetFeature
response is auto-generated and refers to all schemas necessary for validation of the response. Using this
option, you can add additional namespace/URL pairs for adding additional schemas. This may be required
when you override the returned container or feature member elements in order to achieve schema-valid
output.

• DisableDynamicSchema: By default, the GML application schema returned in DescribeFeatureType
reponses (and referenced in the xsi:schemaLocation of query responses) will be generated dynam-
ically from the internal feature type representation. This allows generation of application schemas for
different GML versions and is fine for simple feature models (e.g. feature types served from shapefiles or
flat database tables). However, valid re-encoding of complex GML application schema (such as INSPIRE
Data Themes) is technically not feasible. In these cases, you will have to set this option to false, so the
WFS will produce a response that refers to the original schema files used for configuring the feature store.
If you want the references to point to an external copy of your GML application schema files (instead of
pointing back to the deegree WFS), use the optional attribute baseURL that this element provides.

• DisableStreaming: By default, returned features are not collected in memory, but directly streamed
from the backend (e.g. an SQL database) and individually encoded as GML. This enables the querying of
huge numbers of features with only minimal memory footprint. However, by using this strategy, the number
of features and their bounding box is not known when the WFS starts to write out the response. Therefore,
this information is omitted from the response (which is perfectly valid according to WFS 1.0.0 and 1.1.0,
and a change request for WFS 2.0.0 has been accepted). If you find that your WFS client has problems with
the response, you may set this option to false. Features will be collected in memory first and the generated
response will include numberOfFeature information and gml:boundedBy for the collection. However, for
huge response and heavy server load, this is not recommended as it introduces significant overhead and may
result in out-of-memory errors.

Coordinate formatters

By default, GML geometries will be encoded using 6 decimal places for CRS with degree axes and 3 places for
CRS with metric axes. In order to override this, two options are available:

42 Chapter 5. Web services

deegree Webservices, Release 3.3.10

• DecimalCoordinatesFormatter: Empty element, attribute places specifies the number of deci-
mal places.

• CustomCoordinateFormatter: By specifiying this element, an implementation of Java inter-
face org.deegree.geometry.io.CoordinateFormatter can be instantiated. Child element
JavaClass contains the qualified name of the Java class (which must be on the classpath).

5.1.7 Adding custom output formats

Using option element CustomFormat, it possible to plug-in your own Java classes to generate the output for a
specific mime type (e.g. a binary format)

Option Cardinality Value Description
MimeType 1..n String Mime types associated with this format configuration
JavaClass 1..1 String Qualified Java class name
Config 0..1 Complex Value to add to xsi:schemaLocation attribute

• MimeType: Mime types associated with this format configuration (and announced in GetCapabilities)

• JavaClass: Therefore, an implementation of interface org.deegree.services.wfs.format.CustomFormat
must be present on the classpath.

• Config:

5.1.8 Stored queries

Besides standard (‘ad hoc’) queries, WFS 2.0.0 introduces so-called stored queries. When WFS
2.0.0 support is activated, your WFS will automatically support the well-known stored query
urn:ogc:def:storedQuery:OGC-WFS::GetFeatureById (defined in the WFS 2.0.0 specifica-
tion). It can be used to query a feature instance by specifying it’s gml:id (similar to GetGmlObject requests
in WFS 1.1.0). In order to define custom stored queries, use the StoredQuery element to specify the file
name of a StoredQueryDefinition file. The given file name (can be relative) must point to a valid WFS 2.0.0
StoredQueryDefinition file. Here’s an example:

Example for a WFS 2.0.0 StoredQueryDefinition file

<StoredQueryDefinition id="urn:x-inspire:query:GetAddressesForStreet"
xmlns="http://www.opengis.net/wfs/2.0"
xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0"
xmlns:gn="urn:x-inspire:specification:gmlas:GeographicalNames:3.0">
<Title>GetAddressesForStreet</Title>
<Abstract>Returns the ad:Address features located in the specified street.</Abstract>
<Parameter name="streetName" type="xs:string">

<Abstract>Name of the street (mandatory)</Abstract>
</Parameter>
<QueryExpressionText returnFeatureTypes="ad:Address"
language="urn:ogc:def:queryLanguage:OGC-:WFSQueryExpression">
<Query typeNames="ad:Address">
<Filter xmlns="http://www.opengis.net/fes/2.0">
<PropertyIsEqualTo>
<ValueReference>

ad:component/ad:ThoroughfareName/ad:name/gn:GeographicalName/gn:spelling/gn:SpellingOfName/gn:text
</ValueReference>
<Literal>${streetName}</Literal>

</PropertyIsEqualTo>
</Filter>

</Query>
</QueryExpressionText>

</StoredQueryDefinition>

5.1. Web Feature Service (WFS) 43

deegree Webservices, Release 3.3.10

This example is actually usable if your WFS is set up to serve the ad:Address feature type from INSPIRE
Annex I. It defines the stored query urn:x-inspire:storedQuery:GetAddressesForStreet
for retrieving ad:Address features that are located in the specified street. The
street name is passed using parameter streetName. If your WFS instance can
be reached at http://localhost:8080/services, you could use the request
http://localhost:8080/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat
to fetch the ad:Address features in street Madame Curiestraat.

Tip: deegree WFS supports the execution of stored queries using GetFeature and GetPropertyValue
requests. It also implements the ListStoredQueries and the DescribeStoredQueries operations.
However, there is no support for CreateStoredQuery and DropStoredQuery at the moment.

5.2 Web Map Service (WMS)

In deegree terminology, a deegree WMS renders maps from data stored in feature, coverage and tile stores. The
WMS is configured using a layer structure, called a theme. A theme can be thought of as a collection of layers,
organized in a tree structure. What the layers show is configured in a layer configuration, and how it is shown is
configured in a style file. Supported style languages are StyledLayerDescriptor (SLD) and Symbology Encoding
(SE).

Figure 5.3: A WMS resource is connected to exactly one theme resource

Tip: In order to fully understand deegree WMS configuration, you will have to learn configuration of other
workspace aspects as well. Chapter Map styles describes the creation of layers and styling rules. Chapter Feature
stores describes the configuration of vector data access and chapter Coverage stores describes the configuration of
raster data access.

5.2.1 A word on layers and themes

Readers familiar with the WMS protocol might be wondering why layers can not be configured directly in the
WMS configuration file. Inspired by WMTS 1.0.0 we found the idea to separate structure and content very
appealing. Thinking of a layer store that just offers a set of layers is an easy concept. Thinking of a theme as a
structure that may contain layers at certain points also makes sense. But when thinking of WMS the terms begin
clashing. We suggest to avoid confusion as much as possible by using the same name for each corresponding
theme, layer and possibly even tile/feature/coverage data sources. We believe that once you work a little with
the concept of themes, and seeing them exported as WMS layer trees, the concepts fit well enough so you can
appreciate the clean cut.

44 Chapter 5. Web services

deegree Webservices, Release 3.3.10

5.2.2 Configuration overview

The configuration can be split up in six sections. Readers familiar with other deegree service configurations may
recognize some similarities, but we’ll describe the options anyway, because there may be subtle differences. A
document template looks like this:

<?xml version=’1.0’?>
<deegreeWMS xmlns=’http://www.deegree.org/services/wms’>

<!-- actual configuration goes here -->
</deegreeWMS>

The following table shows what top level options are available.

Option Cardinal-
ity

Value Description

SupportedVersions 0..1 Com-
plex

Limits active OGC protocol versions

MetadataStoreId 0..1 String Configures a metadata store to check if metadata ids for
layers exist

MetadataURLTem-
plate

0..1 String Template for generating URLs to feature type metadata

ServiceConfigura-
tion

1 Com-
plex

Configures service content

FeatureInfoFormats 0..1 Com-
plex

Configures additional feature info output formats

ExtendedCapabili-
ties

0..n Com-
plex

Extended Metadata reported in GetCapabilities response

5.2.3 Basic options

• SupportedVersions: By default, all implemented WMS protocol versions (1.1.1 and 1.3.0) are acti-
vated. You can control offered WMS protocol versions using the element SupportedVersions.
This element allows any of the child elements <Version>1.1.1</Version> and
<Version>1.3.0</Version>.

• MetadataStoreId: If set to a valid metadata store, the store is queried upon startup with all configured
layer metadata set ids. If a metadata set does not exist in the metadata store, it will not be exported as
metadata URL in the capabilties. This is a useful option if you want to automatically check for configuration
errors/typos. By default, no checking is done.

• MetadataURLTemplate: By default, no metadata URLs are generated for layers in
the capabilities. You can set this option either to a unique URL, which will be ex-
ported as is, or to a template with a placeholder. In any case, a metadata URL will
only be exported if the layer has a metadata set id set. A template looks like this:
http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=${metadataSetId}&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full.
Please note that you’ll need to escape the & symbols with & as shown in the example. The ${meta-
dataSetId} will be replaced with the metadata set id from each layer.

Here is a snippet for quick copy & paste:

<SupportedVersions>
<SupportedVersion>1.1.1</SupportedVersion>

</SupportedVersions>
<MetadataStoreId>mdstore</MetadataStoreId>
<MetadataURLTemplate>http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=${metadataSetId}&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full</MetadataURLTemplate>

5.2.4 Service content configuration

You can configure the behaviour of layers using the DefaultLayerOptions element.

5.2. Web Map Service (WMS) 45

http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&

deegree Webservices, Release 3.3.10

Have a look at the layer options and their values:

Option Cardi-
nality

String Description

Antialias-
ing

0..1 String Whether to antialias NONE, TEXT, IMAGE or BOTH, default is BOTH

Render-
ingQuality

0..1 String Whether to render LOW, NORMAL or HIGH quality, default is HIGH

Interpola-
tion

0..1 String Whether to use BILINEAR, NEAREST_NEIGHBOUR or BICUBIC
interpolation, default is NEAREST_NEIGHBOUR

MaxFea-
tures

0..1 Inte-
ger

Maximum number of features to render at once, default is 10000

FeatureIn-
foRadius

0..1 Inte-
ger

Number of pixels to consider when doing GetFeatureInfo, default is 1

You can configure the WMS to use one or more preconfigured themes. In WMS terms, each theme is mapped to
a layer in the WMS capabilities. So if you use one theme, the WMS root layer corresponds to the root theme. If
you use multiple themes, a synthetic root layer is exported in the capabilities, with one child layer corresponding
to each root theme. The themes are configured using the ThemeId element.

Here is an example snippet of the content section:

<ServiceConfiguration>

<DefaultLayerOptions>
<Antialiasing>NONE</Antialiasing>

</DefaultLayerOptions>

<ThemeId>mytheme</ThemeId>

</ServiceConfiguration>

5.2.5 Custom feature info formats

Any mime type can be configured to be available as response format for GetFeatureInfo requests, although the
most commonly used is probably text/html. There are two alternative ways of controlling how the output is
generated (besides using the default HTML output). One involves a deegree specific templating mechanism, the
other involves writing an XSLT script. The deegree specific mechanism has the advantage of being considerably
less verbose, making common use cases very easy, while the XSLT approach gives you all the freedom.

This is how the configuration section looks like for configuring a deegree templating based format:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<File>../customformat.gfi</File>
<Format>text/html</Format>

</GetFeatureInfoFormat>
</FeatureInfoFormats>

The configuration for the XSLT approach looks like this:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<XSLTFile gmlVersion="GML_32">../customformat.xsl</XSLTFile>
<Format>text/html</Format>

</GetFeatureInfoFormat>
</FeatureInfoFormats>

Of course it is possible to define as many custom formats as you want, as long as you use a different mime type for
each (just duplicate the GetFeatureInfoFormat element). If you use one of the default formats, the default
output will be overridden with your configuration.

46 Chapter 5. Web services

deegree Webservices, Release 3.3.10

In order to write your XSLT script, you’ll need to develop it against a specific GML version (namespaces between
GML versions may differ, GML output itself will differ). The default is GML 3.2, you can override it by speci-
fying the gmlVersion attribute on the XSLTFile element. Valid GML version strings are GML_2, GML_30,
GML_31 and GML_32.

If you want to learn more about the templating format, read the following sections.

5.2.6 FeatureInfo templating format

The templating format can be used to create text based output formats for featureinfo output. It uses a number of
definitions, rules and special constructs to replace content with other content based on feature and property values.
Please note that you should make sure your file is UTF-8 encoded if you’re using umlauts.

Introduction/Example

This section gives a quick overview how the format works and demonstrates the development of a small sample
HTML output.

On top level, you can have a number of template definitions. A template always has a name, and there always
needs to be a template named start (yes, it’s the one we start with).

A simple valid templating file that does not actually depend on the features coming in looks like this:

<?template start>
<html>
<body>

<p>Hello</p>
</body>
</html>

A featureinfo request will now always yield the body of this template. In order to use the features coming in, you
need to define other templates, and call them from a template. So let’s add another template, and call it from the
start template:

<?template start>
<html>
<body>

<?feature *:myfeaturetemplate>

</body>
</html>

<?template myfeaturetemplate>
I have a feature

What happens now is that first the body of the start template is being output. In that output, the <?feature
*:myfeaturetemplate> is replaced with the content of the myfeaturetemplate template for each fea-
ture in the feature collection. So if your query hits five features, you’ll get five li tags like in the template.
The asterisk is used to select all features, it’s possible to limit the number of objects matched. See below in the
reference section for a detailed explanation on how it works.

Within the myfeaturetemplate template you have switched context. In the start template your context
is the feature collection, and you can call feature templates. In the myfeaturetemplate you ‘went down’
the tree and are now in a feature context, where you can call property templates. So what can we do in a feature
context? Let’s start simple by writing out the feature type name. Change the myfeaturetemplate like this:

<?template myfeaturetemplate>
I have a <?name> feature

5.2. Web Map Service (WMS) 47

deegree Webservices, Release 3.3.10

What happens now is that for each use of the myfeaturetemplate the <?name> part is being replaced with
the name of the feature type of the feature you hit. So if you hit two features, each of a different type, you get two
different li tags in the document, each with its name written in it.

So deegree only replaces the template call in the start template with its replacement once the special constructs
in the called template are all replaced, and all the special constructs/calls within that template are all replaced, ...
and so on.

Let’s take it to the next level. What’s you really want to do in featureinfo responses is of course get the value of
the features’ properties. So let’s add another template, and call it from the myfeaturetemplate template:

<?template myfeaturetemplate>
I have a <?name> feature and properties: <?property *:mypropertytemplate>

<?template mypropertytemplate>
<?name>=<?value>

Now you also get all property names and values in the li item. Note that again you switched the context in the
template, now you are at property level. The <?name> and <?value> special constructs yield the property
name and value, respectively (remember, we’re at property level here).

While that’s already nice, people often put non human readable values in properties, even property names are
sometimes not human readable. In order to fix that, you often have code lists mapping the codes to proper text. To
use these, there’s a special kind of template called a map. A map is like a simple property file. Let’s have a look
at how to define one:

<?map mycodelistmap>
code1=Street
code2=Highway
code3=Railway

<?map mynamecodelistmap>
tp=Type of way

Looks simple enough. Instead of template we use map, after that comes the name. Then we just map codes to
values. So how do we use this? Instead of just using the <?name> or <?value> we push it through the map:

<?template mypropertytemplate>
<?name:map mynamecodelistmap>=<?value:map mycodelistmap>

Here the name of the property is replaced with values from the mynamecodelistmap, the value is replaced
with values from the mycodelistmap. If the map does not contain a fitting mapping, the original value is used
instead.

That concludes the introduction, the next section explains all available special constructs in detail.

Templating special constructs

This section shows all available special constructs. The selectors are explained in the table below. The validity
describes in which context the construct can be used (and where the description applies). The validity can be one
of top level (which means it’s the definition of something), featurecollection (the start template), feature (a
template on feature level), property (a template on property level) or map (a map definition).

48 Chapter 5. Web services

deegree Webservices, Release 3.3.10

Construct Valid-
ity

Description

<?template
name>

top level defines a template with name name

<?map name> top level defines a map with name name
<?feature
selector:name>

fea-
turecol-
lection

calls the template with name name for features matching the selector selector

<?property
selector:name>

feature calls the template with name name for properties matching the selector
selector

<?forceproperty
selector:name>

feature calls the template with name name for properties matching the selector
selector. Matches also properties that are not actually contained in the feature.

<?name> feature evaluates to the feature type name
<?name> property evaluates to the property name
<?name:map
name>

feature uses the map name to map the feature type name to a value

<?name:map
name>

property uses the map name to map the property name to a value

<?value> property evaluates to the property’s value
<?value:map
name>

property uses the map name to map the property’s value to another value

<?index> feature evaluates to the index of the feature (in the list of matches from the previous
template call)

<?index> property evaluates to the index of the property (in the list of matches from the previous
template call)

<?gmlid> feature evaluates to the feature’s gml:id
<?odd:name> feature calls the name template if the index of the current feature is odd
<?odd:name> property calls the name template if the index of the current property is odd
<?even:name> feature calls the name template if the index of the current feature is even
<?even:name> property calls the name template if the index of the current property is even
<?link:prefix:> property if the value of the property is not an absolute link, the prefix is prepended
<?link:prefix:text> property the text of the link will be text instead of the link address

The selector for properties and features is a kind of pattern matching on the object’s name.

Selector Description
* matches all objects
* text matches all objects with names ending in text
text * matches all objects with names starting with text
not(selector) matches all objects not matching the selector selector
selector1, selector2 matches all objects matching selector1 and selector2

5.2.7 Extended capabilities

Important for applications like INSPIRE, it is often desirable to include predefined blocks of XML in the extended
capabilities section of the WMS’ capabilities output. This can be achieved simply by adding these blocks to the
extended capabilities element of the configuration:

<ExtendedCapabilities>
<MyCustomOutput xmlns="http://www.custom.org/output">
...

</MyCustomOutput>
</ExtendedCapabilities>

5.2. Web Map Service (WMS) 49

deegree Webservices, Release 3.3.10

5.2.8 Vendor specific parameters

The deegree WMS supports a number of vendor specific parameters. Some parameters are supported on a per
layer basis while some are applied to the whole request. Most of the parameters correspond to the layer options
above.

The parameters which are supported on a per layer basis can be used to set an option globally, eg. ...&RE-
QUEST=GetMap&ANTIALIAS=BOTH&..., or for each layer separately (using a comma separated list): ...&RE-
QUEST=GetMap&ANTIALIAS=BOTH,TEXT,NONE&LAYERS=layer1,layer2,layer3&... Most of the layer
options have a corresponding parameter with a similar name: ANTIALIAS, INTERPOLATION, QUALITY and
MAX_FEATURES. The feature info radius can currently not be set dynamically.

The PIXELSIZE parameter can be used to dynamically adjust the resolution of the resulting image. The default is
the WMS default of 0.28 mm. So to achieve a double resolution, you can double the WIDTH/HEIGHT parameter
values and set the PIXELSIZE parameter to 0.14.

Using the QUERYBOXSIZE parameter you can include features when rendering that would normally not intersect
the envelope specified in the BBOX parameter. That can be useful if you have labels at point symbols out of the
envelope which would be rendered partly inside the map. Normal GetMap behaviour will exclude such a label.
With the QUERYBOXSIZE parameter you can specify a factor by which to enlarge the original bounding box,
which is used solely for querying the data store (the actual extent returned will not be changed!). Use values like
1.1 to enlarge the envelope by 5% in each direction (this would be 10% in total).

5.3 Web Map Tile Service (WMTS)

In deegree terminology, a deegree WMTS provides access to tiles stored in tile stores. The WMTS is configured
using so-called themes. A theme can be thought of as a collection of layers, organized in a tree structure.

Figure 5.4: A WMTS resource is connected to any number of theme resources (with tile layers)

Tip: In order to fully understand deegree WMTS configuration, you will have to learn configuration of other
workspace aspects as well. Chapter Tile stores describes the configuration of tile data access. Chapter Map layers
describes the configuration of layers (only tile layers are usable for the WMTS). Chapter Map themes describes
how to create a theme from layers.

5.3.1 Minimal example

The only mandatory section is ServiceConfiguration (which can be empty), therefore a minimal WMTS
configuration example looks like this:

50 Chapter 5. Web services

deegree Webservices, Release 3.3.10

WMTS config example 1: Minimal configuration

<deegreeWMTS configVersion="3.2.0"
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wmts
http://schemas.deegree.org/services/wmts/3.2.0/wmts.xsd">

<ServiceConfiguration />

</deegreeWMTS>

This will create a deegree WMTS resource that connects to all configured themes of the workspace.

5.3.2 More complex example

A more complex configuration that restricts the offered themes looks like this:

WMTS config example 2: More complex configuration

<deegreeWMTS configVersion="3.2.0"
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wmts
http://schemas.deegree.org/services/wmts/3.2.0/wmts.xsd">

<ServiceConfiguration>
<ThemeId>water</ThemeId>
<ThemeId>roads</ThemeId>

</ServiceConfiguration>

</deegreeWMTS>

5.3.3 Configuration overview

The deegree WMTS config file format is defined by schema file http://schemas.deegree.org/services/wmts/3.2.0/wmts.xsd.
The root element is deegreeWMTS and the config attribute must be 3.2.0.

The following table lists all available configuration options. When specifying them, their order must be respected.

Option Cardinality Value Description
MetadataURLTemplate 0..1 String Template for generating URLs to layer metadata
ThemeId 0..n String Limits themes to use

Below the ServiceConfiguration section you can specify custom featureinfo format handlers:

Have a look at section Custom feature info formats (in the WMS chapter) to see how custom featureinfo formats
are configured. Take note that the GetFeatureInfo operation is currently only supported for remote WMS tile store
backends.

5.4 Catalogue Service for the Web (CSW)

In deegree terminology, a deegree CSW provides access to metadata records stored in a metadata store. If the
metadata store is transaction-capable, CSW transactions can be used to modify the stored records.

5.4. Catalogue Service for the Web (CSW) 51

http://schemas.deegree.org/services/wmts/3.2.0/wmts.xsd

deegree Webservices, Release 3.3.10

Figure 5.5: A CSW resource is connected to exactly one metadata store resource

Tip: In order to fully understand deegree CSW configuration, you will have to learn configuration of other
workspace aspects as well. Chapter Metadata stores describes the configuration of metadatastores.

5.4.1 Minimal example

There is no mandatory element, therefore a minimal CSW configuration example looks like this:

CSW config example 1: Minimal configuration

<?xml version="1.0" encoding="UTF-8"?>
<deegreeCSW configVersion="3.2.0"
xmlns="http://www.deegree.org/services/csw"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/csw
http://schemas.deegree.org/services/csw/3.2.0/csw_configuration.xsd">

</deegreeCSW>

5.4.2 Configuration overview

The deegree CSW config file format is defined by schema file http://schemas.deegree.org/services/csw/3.2.0/csw_configuration.xsd.
The root element is deegreeCSW and the config attribute must be 3.2.0.

The following table lists all available configuration options. When specifiying them, their order must be respected.

52 Chapter 5. Web services

http://schemas.deegree.org/services/csw/3.2.0/csw_configuration.xsd

deegree Webservices, Release 3.3.10

Option Cardi-
nality

Value Description

SupportedVer-
sions

0..1 String Supported CSW Version (Default: 2.0.2)

MaxMatches 0..1 Inte-
ger

Not negative number of matches (Default:0)

MetadataStoreId 0..1 String Id of the meradatastoreId to use as backenend. By default the only
configured store is used.

EnableTransac-
tions

0..1 Boolean Enable transactions (CSW operations) default: disabled. (Default:
false)

EnableInspireEx-
tensions

0..1 Enable the INSPIRE extensions, default: disabled

ExtendedCapabil-
ities

0..1 anyURI Include referenced capabilities section.

ElementNames 0..1 List of configured return profiles. See following xml snippet for
detailed informations.

...
<ElementNames>

<!-- Can contain multiuple sets of element names -->
<ElementName>

<!-- name of this set. Used <csw:ElementName>Base</csw:ElementName>
in a reqest to query this profile -->

<name>Base</name>
<!-- List of XPath elements to return. If an element node is specified

the complete node is returned -->
<XPath>/gmd:MD_Metadata/gmd:language</XPath>
<XPath>/gmd:MD_Metadata/gmd:fileIdentifier</XPath>
<XPath>/gmd:MD_Metadata/gmd:hierarchyLevel</XPath>

</ElementName>
...

<ElementName>
...

5.4.3 Extended Functionality

• deegree3 CSW (up to 3.2-pre11) supports JSON as additional output format. Use outputFor-
mat=”application/json” in your GetRecords or GetRecordById Request to get the matching records in
JSON.

5.5 Web Processing Service (WPS)

A deegree WPS allows the invocation of geospatial processes. The offered processes are determined by the
attached process provider resources.

Tip: In order to fully master deegree WPS configuration, you will have to understand Process providers as well.

5.5.1 Minimal example

A minimal valid WPS configuration example looks like this:

<deegreeWPS configVersion="3.1.0" xmlns="http://www.deegree.org/services/wps" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wps http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd">

</deegreeWPS>

This will create a WPS resource with the following properties:

5.5. Web Processing Service (WPS) 53

deegree Webservices, Release 3.3.10

Figure 5.6: Workspace components involved in a deegree WPS configuration

• All WPS protocol versions are enabled. Currently, this is only 1.0.0.

• The WPS resource will attach to all process provider resources in the workspace.

• Temporary files (e.g. for process results) are stored in the standard Java temp directory of the deegree
webapp.

• The last 100 process executions are tracked.

• Memory buffers (e.g. for inline XML inputs) are limited to 1 MB each. If this limit is exceeded, buffering
is switched to use a file in the storage directory.

5.5.2 Complex example

A more complex configuration example looks like this:

<deegreeWPS configVersion="3.1.0" xmlns="http://www.deegree.org/services/wps" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/services/wps http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd">

<SupportedVersions>
<Version>1.0.0</Version>

</SupportedVersions>

<DefaultExecutionManager>
<StorageDir>../var/wps/</StorageDir>
<TrackedExecutions>1000</TrackedExecutions>
<InputDiskSwitchLimit>1048576</InputDiskSwitchLimit>

</DefaultExecutionManager>

</deegreeWPS>

This will create a WPS resource with the following properties:

• Enabled WPS protocol versions: 1.0.0

• The WPS resource will attach to all process provider resources in the workspace.

• Storage directory for temporary files (e.g. for process results) is /var/wps inside the workspace.

• The last 1000 process executions will be tracked.

• Memory buffers (e.g. for inline XML inputs) are limited to 1 MB each. If this limit is exceeded, buffering
is switched to use a file in the storage directory.

54 Chapter 5. Web services

deegree Webservices, Release 3.3.10

5.5.3 Configuration overview

The deegree WPS config file format is defined by schema file http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd.
The root element is deegreeWPS and the config attribute must be 3.1.0. The following table lists all available
configuration options (complex ones contain nested options themselves). When specifiying them, their order must
be respected.

Option Cardinality Value Description
SupportedVersions 0..1 Complex Activated OGC protocol versions, default: all
DefaultExecutionManager 0..1 Complex Settings for tracking process executions

The remainder of this section describes these options and their sub-options in detail.

• SupportedVersions: By default, all implemented WMS protocol versions are activated. Currently,
this is just 1.0.0 anyway. Alternatively you can control offered WPS protocol versions using the element
SupportedVersions. This element allows the child element <Version>1.0.0</Version> for
now.

5.5.4 DefaultExecutionManager section

This section controls aspects that are related to temporary storage (for input and output parameter values) during
the execution of processes. The DefaultExecutionManager option has the following sub-options:

Option Cardinal-
ity

Value Description

StorageDir 0..1 String Directory for storing execution-related data, default: Java
tempdir

TrackedExecu-
tions

0..1 Inte-
ger

Number of executions to track, default: 100

InputDiskSwitch-
Limit

0..1 Inte-
ger

Limit in bytes, before a ComplexInputInput is written to disk,
default: 1 MiB

5.6 Metadata

This section describes the configuration for the different types of metadata that a service reports in the
GetCapabilities response. These options don’t affect the data that the service offers or the behaviour of
the service. It merely changes the descriptive metadata that the service reports.

In order to configure the metadata for a web service instance xyz, create a corresponding xyz_metadata.xml
file in the services directory of the workspace. The actual service type does not matter, the configuration works
for all types of service alike.

5.6. Metadata 55

http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd

deegree Webservices, Release 3.3.10

Example for deegreeServicesMetadata

<deegreeServicesMetadata xmlns="http://www.deegree.org/services/metadata"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" configVersion="3.2.0"
xsi:schemaLocation="http://www.deegree.org/services/metadata http://schemas.deegree.org/services/metadata/3.2.0/metadata.xsd">

<ServiceIdentification>
<Title>INSPIRE Addresses</Title>
<Abstract>Direct Access Download Service for INSPIRE Addresses</Abstract>

</ServiceIdentification>

<ServiceProvider>
<ProviderName>The deegree project</ProviderName>
<ProviderSite>http://www.deegree.org</ProviderSite>
<ServiceContact>

<IndividualName>Markus Schneider</IndividualName>
<PositionName>deegree TMC</PositionName>
<Phone>0228/18496-0</Phone>
<Facsimile>0228/18496-29</Facsimile>
<ElectronicMailAddress>info@lat-lon.de</ElectronicMailAddress>
<Address>
<DeliveryPoint>Aennchenstr. 19</DeliveryPoint>
<City>Bonn</City>
<AdministrativeArea>NRW</AdministrativeArea>
<PostalCode>53177</PostalCode>
<Country>Germany</Country>

</Address>
<OnlineResource>http://www.deegree.org</OnlineResource>
<HoursOfService>24x7</HoursOfService>
<ContactInstructions>Do not hesitate to call</ContactInstructions>
<Role>PointOfContact</Role>

</ServiceContact>
</ServiceProvider>

<DatasetMetadata>
<MetadataUrlTemplate>http://www.nationaalgeoregister.nl/geonetwork/srv/nl/csw?service=CSW&request=GetRecordById&version=2.0.2&id=${metadataSetId}</MetadataUrlTemplate>
<Dataset>

<Name xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">ad:Address</Name>
<Title>ad:Address</Title>
<Abstract>Harmonized INSPIRE Addresses (Annex I)</Abstract>
<MetadataSetId>beefcafe-beef-cafe-beef-cafebeefcaf</MetadataSetId>

</Dataset>
</DatasetMetadata>

<ExtendedCapabilities protocolVersions="2.0.0">
<inspire_dls:ExtendedCapabilities xmlns:inspire_dls="http://inspire.ec.europa.eu/schemas/inspire_dls/1.0"
xmlns:inspire_common="http://inspire.ec.europa.eu/schemas/common/1.0"
xsi:schemaLocation="http://inspire.ec.europa.eu/schemas/common/1.0 http://inspire.ec.europa.eu/schemas/common/1.0/common.xsd http://inspire.ec.europa.eu/schemas/inspire_dls/1.0 http://inspire.ec.europa.eu/schemas/inspire_dls/1.0/inspire_dls.xsd">
<inspire_common:MetadataUrl>
<inspire_common:URL>http://www.nationaalgeoregister.nl/geonetwork/srv/nl/csw?service=CSW&request=GetRecordById&version=2.0.2&id=eea97fc0-8291-11e1-afa6-0800200c9a66</inspire_common:URL>
<inspire_common:MediaType>application/vnd.iso.19139+xml</inspire_common:MediaType>

</inspire_common:MetadataUrl>
<inspire_common:SupportedLanguages>
<inspire_common:DefaultLanguage>
<inspire_common:Language>ger</inspire_common:Language>

</inspire_common:DefaultLanguage>
</inspire_common:SupportedLanguages>
<inspire_common:ResponseLanguage>
<inspire_common:Language>ger</inspire_common:Language>

</inspire_common:ResponseLanguage>
<inspire_dls:SpatialDataSetIdentifier>

<inspire_common:Code>eea97fc0-8291-11e1-afa6-0800200c9a66</inspire_common:Code>
</inspire_dls:SpatialDataSetIdentifier>

</inspire_dls:ExtendedCapabilities>
</ExtendedCapabilities>

</deegreeServicesMetadata>
56 Chapter 5. Web services

deegree Webservices, Release 3.3.10

The metadata config file format is defined by schema file http://schemas.deegree.org/services/metadata/3.2.0/metadata.xsd.
The root element is deegreeServicesMetadata and the config attribute must be 3.2.0. The following
table lists all available configuration options (complex ones contain nested options themselves). When specifiying
them, their order must be respected.

Option Cardinality Value Description
ServiceIdentification 1..1 Complex Metadata that describes the service
ServiceProvider 1..1 Complex Metadata that describes the provider of the service
DatasetMetadata 0..1 Complex Metadata on the datasets provided by the service
ExtendedCapabilities 0..n Complex Extended Metadata reported in OperationsMetadata section

The remainder of this section describes these options and their sub-options in detail.

5.6.1 Service identification

The ServiceIdentification option has the following sub-options:

Option Cardinality Value Description
Title 0..n String Title of the service
Abstract 0..n String Abstract
Keywords 0..n Complex Keywords that describe the service
Fees 0..1 String Fees that apply for using this service
AccessConstraints 0..n String Access constraints for this service

5.6.2 Service provider

The ServiceProvider option has the following sub-options:

Option Cardinality Value Description
ProviderName 0..1 String Name of the service provider
ProviderSite 0..1 String Website of the service provider
ServiceContact 0..1 Complex Contact information

5.6.3 Dataset metadata

This type of metadata is attached to the datasets that a service offers (e.g. layers for the WMS or feature types for
the WFS). The services themselves may have specific mechanisms to override this metadata, so make sure to have
a look at the appropriate service sections. However, some metadata configuration can be done right here.

To start with, you’ll need to add a DatasetMetadata container element:

<DatasetMetadata>
...
</DatasetMetadata>

Apart from the descriptive metadata (title, abstract etc.) for each dataset, you can also configure ‘‘Meta-
dataURL‘‘s, external metadata links and metadata as well as external metadata IDs.

For general MetadataURL configuration, you can configure the element MetadataUrlTemplate. Its con-
tent can be any URL, which may contain the pattern ${metadataSetId}. For each dataset (layer, feature type)
the service will output a MetadataURL based on that pattern, if a MetadataSetId has been configured for
that dataset (see below). The template is optional, if omitted, no MetadataURL will be produced.

Configuration for the template looks like this:

<DatasetMetadata>
<MetadataUrlTemplate>http://some.url.de/csw?request=GetRecordById&service=CSW&version=2.0.2&outputschema=http://www.isotc211.org/2005/gmd&elementsetname=full&id=${metadataSetId}</MetadataUrlTemplate>

...
</DatasetMetadata>

5.6. Metadata 57

http://schemas.deegree.org/services/metadata/3.2.0/metadata.xsd

deegree Webservices, Release 3.3.10

You can also configure ExternalMetadataAuthority elements, which are currently only used by the
WMS. You can define multiple authorities, with the authority URL as text content and a unique name attribute. For
each dataset you can define an ID for an authority by refering to that name. This will generate an AuthorityURL
and Identifier pair in WMS capabilities documents (version 1.3.0 only).

Configuration for an external authority looks like this:

<DatasetMetadata>
<ExternalMetadataAuthority name="myorg">http://www.myauthority.org/metadataregistry/</ExternalMetadataAuthority>

...
</DatasetMetadata>

Now follows the list of the actual dataset metadata. You can add as many as you need:

<DatasetMetadata>
<MetadataUrlTemplate>...</MetadataUrlTemplate>
...
<Dataset>
...
</Dataset>
<Dataset>
...
</Dataset>
...

</DatasetMetadata>

For each dataset, you can configure the metadata as outlined in the following table:

Option Car-
dinal-
ity

Value Description

Name 1 String/QNamethe layer/feature type name you refer to
Title 0..n String can be multilingual by using the lang attribute
Abstract 0..n String can be multilingual by using the lang attribute
Meta-
dataSetId

0..1 String is used to generate MetadataURL s, see above

External-
Meta-
dataSetId

0..n String is used to generate AuthorityURL s and Identifier s for WMS,
see above. Refer to an authority using the authority attribute.

5.6.4 Extended capabilities

Extended capabilities are generic metadata sections below the OperationsMetadata element in the
GetCapabilities response. They are not defined by the OGC service specifications, but by additional guid-
ance documents, such as the INSPIRE Network Service TGs. deegree treats this section as a generic XML element
and includes it in the output. If your service supports multiple protocol versions (e.g. a WFS that supports 1.1.0
and 2.0.0), you may include multiple ExtendedCapabilities elements in the metadata configuration and
use attribute protocolVersions to indicate the version that you want to define the extended capabilities for.

5.7 Service controller

The controller configuration is used to configure various global aspects that affect all services.

Since it’s a global configuration file for all services, it’s called main.xml, and located in the services direc-
tory. All of the options are optional, if you want the default behaviour, just omit the file completely.

An empty example file looks like follows:

58 Chapter 5. Web services

deegree Webservices, Release 3.3.10

<?xml version=’1.0’?>
<deegreeServiceController xmlns=’http://www.deegree.org/services/controller’ configVersion=’3.2.0’>
</deegreeServiceController>

The following table lists all available configuration options. When specifiying them, their order must be respected.

Option Cardinality Value Description
ReportedUrls 0..1 Complex Hardcode reported URLs in service responses
PreventClassloaderLeaks 0..1 Boolean TODO
RequestLogging 0..1 Complex TODO
ValidateResponses 0..1 Boolean TODO

The following sections describe the available options in detail.

5.7.1 Reported URLs

Some web service responses contain URLs that refer back to the service, for example in capabilities documents
(responses to GetCapabilities requests). By default, deegree derives these URLs from the incoming request, so
you don’t have to think about this, even when your server has multiple network interfaces or hostnames. However,
sometimes it is required to override these URLs, for example when using deegree behind a proxy or load balancer.

Tip: If you don’t have a proxy setup that requires it, don’t configure the reported URLs. In standard setups, the
default behaviour works best.

To override the reported URLs, put a fragment like the following into the main.xml:

<ReportedUrls>
<Services>http://www.mygeoportal.com/ows</Services>
<Resources>http://www.mygeoportal.com/ows-resources</Resources>

</ReportedUrls>

For this example, deegree would report http://www.mygeoportal.com/ows as service end-
point URL in capabilities responses, regardless of the real connection details of the deegree
server. If a specific service is contacted on the deegree server, for example via a request to
http://realnameofdeegreemachine:8080/deegree-webservices/services/inspire-wfs-ad,
deegree would report http://www.mygeoportal.com/ows/inspire-wfs-ad.

The URL configured by Resources relates to the reported URL of the resources servlet, which allows to
access parts of the active deegree workspace via HTTP. Currently, this is only used in WFS DescribeFeatureType
responses that access GML application schema directories.

5.7. Service controller 59

deegree Webservices, Release 3.3.10

60 Chapter 5. Web services

CHAPTER

SIX

FEATURE STORES

Feature stores are workspace resources that provide access to stored features. The two most common use cases
for feature stores are:

• Accessing via Web Feature Service (WFS)

• Providing of data for Feature layers

The remainder of this chapter describes some relevant terms and the feature store configuration files in detail. You
can access this configuration level by clicking feature stores in the service console. The corresponding resource
configuration files are located in subdirectory datasources/feature/ of the active deegree workspace di-
rectory.

Figure 6.1: Feature store resources provide access to geo objects

6.1 Features, feature types and application schemas

Features are abstractions of real-world objects, such as rivers, buildings, streets or state boundaries. They are the
geo objects of a particular application domain.

A feature types defines the data model for a class of features. For example, a feature type River could define a
class of river features that all have the same properties.

61

deegree Webservices, Release 3.3.10

6.1.1 Simple vs. rich features and feature types

Some feature types have a more complex structure than others. Traditionally, GIS software copes with “simple”
feature types:

• Every property is either simple (string, number, date, etc.) or a geometry

• Only a single property with one name is allowed

Basically, a simple feature type is everything that can be represented using a single database table or a single shape
file. In contrast, “rich” feature types additionally allow the following:

• Multiple properties with the same name

• Properties that contain other features

• Properties that reference other features or GML objects

• Properties that contain GML core datatypes which are not geometries (e.g. code types or units of measure)

• Properties that contain generic XML

Example of a rich feature instance encoded in GML

<ad:Address gml:id="AD_ADDRESS_b15cd863-1b47-4f3c-9cd5-d5283d674a2b">
<ad:inspireId>

<base:Identifier xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2">
<base:localId>0532200000000003</base:localId>
<base:namespace>NL.KAD.BAG</base:namespace>

</base:Identifier>
</ad:inspireId>
<ad:position>

<ad:GeographicPosition>
<ad:geometry>
<gml:Point gml:id="POINT_64fae7bf-a836-44af-a63c-349bed1c6f55" srsName="urn:ogc:def:crs:EPSG::4258">
<gml:pos>52.689618 5.246345</gml:pos>

</gml:Point>
</ad:geometry>
<ad:specification>entrance</ad:specification>
<ad:method>byOtherParty</ad:method>
<ad:default>true</ad:default>

</ad:GeographicPosition>
</ad:position>
<ad:locator>

<ad:AddressLocator>
<ad:designator>
<ad:LocatorDesignator>
<ad:designator>1</ad:designator>
<ad:type>2</ad:type>

</ad:LocatorDesignator>
</ad:designator>
<ad:level>unitLevel</ad:level>

</ad:AddressLocator>
</ad:locator>
<ad:validFrom>2009-01-05T23:00:00.000</ad:validFrom>
<ad:validTo>2299-12-30T23:00:00.000</ad:validTo>
<ad:beginLifespanVersion xsi:nil="true" nilReason="UNKNOWN" />
<ad:endLifespanVersion xsi:nil="true" nilReason="UNKNOWN" />
<ad:component xlink:href="#FEATURE_d4a54e57-91cd-410d-9c3d-b0fafdaa080f" />
<ad:component xlink:href="#FEATURE_240b3dd2-fc1c-448e-82a4-210cffe6dd34" />
<ad:component xlink:href="#FEATURE_64f481f4-8a21-4474-8efd-28d01db5e2e3" />

</ad:Address>

62 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Hint: All deegree feature stores support simple feature types, but only the SQL feature store and the memory
feature store support rich feature types.

6.1.2 Application schemas

An application schema defines a number of feature types for a particular application domain. When referring to an
application schema, one usually means a GML application schema that defines a hierarchy of rich feature types.
Examples for GML application schemas are:

• INSPIRE Data Themes (Annex I, II and III)

• GeoSciML

• CityGML

• XPlanung

• AAA

The following diagram shows a part of the INSPIRE Annex I application schema in UML form:

Hint: The SQL feature store or the memory feature store can be used with GML application schemas.

6.2 Shape feature store

The shape feature store serves a feature type from an ESRI shape file. It is currently not transaction capable and
only supports simple feature types.

6.2.1 Minimal configuration example

The only mandatory element is File. A minimal valid configuration example looks like this:

6.2. Shape feature store 63

deegree Webservices, Release 3.3.10

Shape Feature Store config (minimal configuration example)

<ShapeFeatureStore configVersion="3.1.0"
xmlns="http://www.deegree.org/datasource/feature/shape"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/shape
http://schemas.deegree.org/datasource/feature/shape/3.1.0/shape.xsd">

<!-- Required: Path to shape file on file system (can be relative) -->
<File>/tmp/rivers.shp</File>

</ShapeFeatureStore>

This configuration will set up a feature store based on the shape file /tmp/rivers.shp with the following
settings:

• The feature store offers the feature type app:rivers (app bound to
http://www.deegree.org/app)

• SRS information is taken from file /tmp/rivers.prj (if it does not exist, EPSG:4326 is assumed)

• The geometry is added as property app:GEOMETRY

• All data columns from file /tmp/rivers.dbf are used as properties in the feature type

• Encoding of text columns in /tmp/rivers.dbf is guessed based on actual contents

• An alphanumeric index is created for the dbf to speed up filtering based on non-geometric constraints

6.2.2 More complex configuration example

A more complex example that uses all available configuration options:

Shape Feature Store config (more complex configuration example)

<ShapeFeatureStore configVersion="3.1.0"
xmlns="http://www.deegree.org/datasource/feature/shape"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/shape
http://schemas.deegree.org/datasource/feature/shape/3.1.0/shape.xsd">
<StorageCRS>EPSG:4326</StorageCRS>
<FeatureTypeName>River</FeatureTypeName>
<FeatureTypeNamespace>http://www.deegree.org/app</FeatureTypeNamespace>
<FeatureTypePrefix>app</FeatureTypePrefix>
<File>/tmp/rivers.shp</File>
<Encoding>ISO-8859-1</Encoding>
<GenerateAlphanumericIndexes>false</GenerateAlphanumericIndexes>
<Mapping>

<SimpleProperty name="objectid" mapping="OBJECTID" />
<GeometryProperty name="mygeom" />

</Mapping>
</ShapeFeatureStore>

This configuration will set up a feature store based on the shape file /tmp/rivers.shp with the following
settings:

• SRS of stored geometries is EPSG:4326 (no auto-detection)

• The feature store offers the shape file contents as feature type app:River (app bound to
http://www.deegree.org/app)

64 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

• Encoding of text columns in /tmp/rivers.dbf is ISO-8859-1 (no auto-detection)

• No alphanumeric index is created for the dbf (filtering based on non-geometric constraints has to be per-
formed in-memory)

• The mapping between the shape file columns and the feature type properties is customized.

• Property objectid corresponds to column OBJECTID of the shape file

• Property geometry corresponds to the geometry of the shape file

6.2.3 Configuration options

The configuration format for the deegree shape feature store is defined by schema file
http://schemas.deegree.org/datasource/feature/shape/3.1.0/shape.xsd. The following table lists all available
configuration options. When specifiying them, their order must be respected.

Option Cardi-
nality

Value Description

StorageCRS 0..1 String CRS of stored geometries
FeatureTypeName 0..n String Local name of the feature type (defaults to base name of

shape file)
FeatureTypeNamespace 0..1 String Namespace of the feature type (defaults to

“http://www.deegree.org/app”)
FeatureTypePrefix 0..1 String Prefix of the feature type (defaults to “app”)
File 1..1 String Path to shape file (can be relative)
Encoding 0..1 String Encoding of text fields in dbf file
GenerateAlphanu-
mericIndexes

0..1 Boolean Set to true, if an index for alphanumeric fields should be
generated

Mapping 0..1 Com-
plex

Customized mapping between dbf column names and
property names

6.3 Memory feature store

The memory feature store serves feature types that are defined by a GML application schema and are stored in
memory. It is transaction capable and supports rich GML application schemas.

6.3.1 Minimal configuration example

The only mandatory element is GMLSchema. A minimal valid configuration example looks like this:

Memory Feature Store config (minimal configuration example)

<MemoryFeatureStore configVersion="3.0.0"
xmlns="http://www.deegree.org/datasource/feature/memory"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/memory
http://schemas.deegree.org/datasource/feature/memory/3.0.0/memory.xsd">

<!-- Required: GML application schema file / directory to read feature types from -->
<GMLSchema version="GML_32">../../appschemas/inspire/annex1/addresses.xsd</GMLSchema>

</MemoryFeatureStore>

This configuration will set up a memory feature store with the following settings:

6.3. Memory feature store 65

http://schemas.deegree.org/datasource/feature/shape/3.1.0/shape.xsd
http://www.deegree.org/app

deegree Webservices, Release 3.3.10

• The GML 3.2 application schema from file ../../appschemas/inspire/annex1/addresses.xsd
is used as application schema (i.e. scanned for feature type definitions)

• No GML datasets are loaded on startup, so the feature store will be empty unless an insertion is performed
(e.g. via WFS-T)

6.3.2 More complex configuration example

A more complex example that uses all available configuration options:

Memory Feature Store config (more complex configuration example)

<MemoryFeatureStore configVersion="3.0.0" xmlns="http://www.deegree.org/datasource/feature/memory"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/memory
http://schemas.deegree.org/datasource/feature/memory/3.0.0/memory.xsd">
<StorageCRS>urn:ogc:def:crs:EPSG::4258</StorageCRS>
<GMLSchema version="GML_32">../../appschemas/inspire/annex1/</GMLSchema>
<GMLFeatureCollection version="GML_32">../../data/gml/address.gml</GMLFeatureCollection>
<GMLFeatureCollection version="GML_32">../../data/gml/parcels.gml</GMLFeatureCollection>

</MemoryFeatureStore>

This configuration will set up a memory feature store with the following settings:

• Directory ../../appschemas/inspire/annex1/ is scanned for *.xsd files. All found files are
loaded as a GML 3.2 application schema (i.e. analyzed for feature type definitions).

• Dataset file ../../data/gml/address.gml is loaded on startup. This must be a GML 3.2 file that
contains a feature collection with features that validates against the application schema.

• Dataset file ../../data/gml/parcels.gml is loaded on startup. This must be a GML 3.2 file that
contains a feature collection with features that validates against the application schema.

• The geometries of loaded features are converted to urn:ogc:def:crs:EPSG::4258.

6.3.3 Configuration options

The configuration format for the deegree memory feature store is defined by schema file
http://schemas.deegree.org/datasource/feature/memory/3.0.0/memory.xsd. The following table lists all available
configuration options (the complex ones contain nested options themselves). When specifiying them, their order
must be respected.

Option Cardinal-
ity

Value Description

StorageCRS 0..1 String CRS of stored geometries
GMLSchema 1..n String Path/URL to GML application schema files/dirs to read

feature types from
GMLFeatureCol-
lection

0..n Com-
plex

Path/URL to GML feature collections documents to read
features from

6.4 Simple SQL feature store

The simple SQL feature store serves simple feature types that are stored in a spatially-enabled database, such as
PostGIS. However, it’s not suited for mapping rich GML application schemas and does not support transactions.
If you need these capabilities, use the SQL feature store instead.

66 Chapter 6. Feature stores

http://schemas.deegree.org/datasource/feature/memory/3.0.0/memory.xsd

deegree Webservices, Release 3.3.10

Tip: If you want to use the simple SQL feature store with Oracle or Microsoft SQL Server, you will need to add
additional modules first. This is described in Adding database modules.

6.4.1 Minimal configuration example

There are three mandatory elements: JDBCConnId, SQLStatement and BBoxStatement. A minimal con-
figuration example looks like this:

Simple SQL feature store config (minimal configuration example)

<SimpleSQLFeatureStore configVersion="3.0.1"
xmlns="http://www.deegree.org/datasource/feature/simplesql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/simplesql
http://schemas.deegree.org/datasource/feature/simplesql/3.0.1/simplesql.xsd">

<!-- Required: Database connection -->
<JDBCConnId>connid</JDBCConnId>

<!-- Required: Query statement -->
<SQLStatement>

SELECT name, title, asbinary(the_geom) FROM some_table
WHERE the_geom && st_geomfromtext(?, -1)

</SQLStatement>

<!-- Required: Bounding box statement -->
<BBoxStatement>SELECT astext(ST_Estimated_Extent(’some_table’, ’the_geom’)) as bbox</BBoxStatement>

</SimpleSQLFeatureStore>

6.4.2 More complex configuration example

Simple SQL feature store config (more complex configuration example)

<SimpleSQLFeatureStore configVersion="3.0.1"
xmlns="http://www.deegree.org/datasource/feature/simplesql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/simplesql
http://schemas.deegree.org/datasource/feature/simplesql/3.0.1/simplesql.xsd">

<!-- Required: Database connection -->
<JDBCConnId>connid</JDBCConnId>

<!-- Required: Query statement -->
<SQLStatement>

SELECT name, title, asbinary(the_geom) FROM some_table
WHERE the_geom && st_geomfromtext(?, -1)

</SQLStatement>

<!-- Required: Bounding box statement -->
<BBoxStatement>SELECT astext(ST_Estimated_Extent(’some_table’, ’the_geom’)) as bbox</BBoxStatement>

</SimpleSQLFeatureStore>

6.4. Simple SQL feature store 67

deegree Webservices, Release 3.3.10

6.4.3 Configuration options

The configuration format is defined by schema file http://schemas.deegree.org/datasource/feature/simplesql/3.0.1/simplesql.xsd.
The following table lists all available configuration options (the complex ones contain nested options themselves).
When specifiying them, their order must be respected.

Option Cardinal-
ity

Value Description

StorageCRS 0..1 String CRS of stored geometries
FeatureTypeName 0..n String Local name of the feature type (defaults to table name)
FeatureType-
Namespace

0..1 String Namespace of the feature type (defaults to
“http://www.deegree.org/app”)

FeatureTypePrefix 0..1 String Prefix of the feature type (defaults to “app”)
JDBCConnId 1..1 String Identifier of the database connection
SQLStatement 1..1 String SELECT statement that defines the feature type
BBoxStatement 1..1 String SELECT statement for the bounding box of the feature type
LODStatement 0..n Com-

plex
Statements for specific WMS scale ranges

6.5 SQL feature store

The SQL feature store allows to configure highly flexible mappings between feature types and database tables. It
can be used for simple mapping tasks (mapping a single database table to a feature type) as well as sophisticated
ones (mapping a complete INSPIRE Data Theme to dozens or hundreds of database tables). As an alternative
to relational mapping, it additionally offers so-called BLOB mapping which stores any kind of rich feature using
a fixed and very simple database schema. In contrast to the simple SQL feature store, the SQL feature store is
transaction capable (even for complex mappings) and ideally suited for mapping rich GML application schemas.
It currently supports the following databases:

• PostgreSQL (8.3, 8.4, 9.0, 9.1, 9.2) with PostGIS extension (1.4, 1.5, 2.0)

• Oracle Spatial (10g, 11g)

• Microsoft SQL Server (2008, 2012)

Tip: If you want to use the SQL feature store with Oracle Spatial or Microsoft SQL Server, you will need to add
additional modules first. This is described in Adding database modules.

6.5.1 Minimal configuration example

A very minimal valid configuration example looks like this:

SQL feature store: Minimal configuration

<SQLFeatureStore configVersion="3.2.0"
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/sql
http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd">
<JDBCConnId>postgis</JDBCConnId>
<FeatureTypeMapping table="country"/>

</SQLFeatureStore>

This configuration defines a SQL feature store resource with the following properties:

• JDBC connection resource with identifier postgis is used to connect to the database

68 Chapter 6. Feature stores

http://schemas.deegree.org/datasource/feature/simplesql/3.0.1/simplesql.xsd
http://www.deegree.org/app

deegree Webservices, Release 3.3.10

• A single table (country) is mapped

• Feature type is named app:country (app=http://www.deegree.org/app)

• Properties of the feature type are automatically derived from table columns

• Every primitive column (number, string, date) is used as a primitive property

• Every geometry column is used as a geometry property (storage CRS is determined automatically, inserted
geometries are transformed by deegree, if necessary)

• Feature id (gml:id) is based on primary key column, prefixed by COUNTRY_

• For insert transactions, it is expected that the database generates new primary keys value automatically
(primary key column must have a trigger or a suitable type such as SERIAL in PostgreSQL)

6.5.2 More complex configuration example

A more complex example:

6.5. SQL feature store 69

deegree Webservices, Release 3.3.10

SQL feature store: More complex configuration

<SQLFeatureStore xmlns="http://www.deegree.org/datasource/feature/sql" xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" configVersion="3.2.0"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/sql http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd">
<JDBCConnId>inspire</JDBCConnId>
<StorageCRS srid="-1" dim="2D">EPSG:4258</StorageCRS>
<GMLSchema>../../appschemas/inspire/annex1/Addresses.xsd</GMLSchema>
<GMLSchema>../../appschemas/inspire/annex1/AdministrativeUnits.xsd</GMLSchema>
<GMLSchema>../../appschemas/inspire/annex1/CadastralParcels.xsd</GMLSchema>

<FeatureTypeMapping name="ad:Address" table="ad_address">
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" type="string" />
<UUIDGenerator />

</FIDMapping>
<Complex path="ad:inspireId">

<Complex path="base:Identifier">
<Primitive path="base:localId" mapping="localid" />
<Primitive path="base:namespace" mapping="’NL.KAD.BAG’" />

</Complex>
</Complex>
<Complex path="ad:position">

<Join table="ad_address_ad_position" fromColumns="fid" toColumns="fk" />
<Complex path="ad:GeographicPosition">
<Complex path="ad:geometry">

<Geometry path="." mapping="value" />
</Complex>
<Complex path="ad:specification">
<Primitive path="text()" mapping="’entrance’" />

</Complex>
<Complex path="ad:method">

<Primitive path="text()" mapping="’byOtherParty’" />
</Complex>
<Primitive path="ad:default" mapping="’true’" />

</Complex>
</Complex>
<Complex path="ad:locator">
<Join table="ad_address_ad_locator" fromColumns="attr_gml_id" toColumns="parentfk" orderColumns="num"
numbered="true" />

<Complex path="ad:AddressLocator">
<Complex path="ad:designator">

<Join table="ad_address_ad_locator_ad_addresslocator_ad_designator" fromColumns="id" toColumns="parentfk"
orderColumns="num" numbered="true" />

<Complex path="ad:LocatorDesignator">
<Primitive path="ad:designator" mapping="ad_addresslocator_ad_locatordesignator_ad_designator" />
<Complex path="ad:type">
<Primitive path="text()" mapping="ad_addresslocator_ad_locatordesignator_ad_type" />
<Primitive path="@codeSpace" mapping="ad_addresslocator_ad_locatordesignator_ad_type_attr_codespace" />

</Complex>
</Complex>

</Complex>
<Complex path="ad:level">

<Primitive path="text()" mapping="ad_addresslocator_ad_level" />
<Primitive path="@codeSpace" mapping="ad_addresslocator_ad_level_attr_codespace" />

</Complex>
</Complex>

</Complex>
<Complex path="ad:validFrom">

<Primitive path="text()" mapping="ad_validfrom" />
<Primitive path="@nilReason" mapping="ad_validfrom_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_validfrom_attr_xsi_nil" />

</Complex>
<Complex path="ad:validTo">
<Primitive path="text()" mapping="ad_validto" />
<Primitive path="@nilReason" mapping="ad_validto_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_validto_attr_xsi_nil" />

</Complex>
<Complex path="ad:beginLifespanVersion">

<Primitive path="text()" mapping="ad_beginlifespanversion" />
<Primitive path="@nilReason" mapping="ad_beginlifespanversion_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_beginlifespanversion_attr_xsi_nil" />

</Complex>
<Complex path="ad:endLifespanVersion">

<Primitive path="text()" mapping="ad_endlifespanversion" />
<Primitive path="@nilReason" mapping="ad_endlifespanversion_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_endlifespanversion_attr_xsi_nil" />

</Complex>
<Complex path="ad:component">

<Join table="ad_address_ad_component" fromColumns="attr_gml_id" toColumns="parentfk" orderColumns="num"
numbered="true" />

<Feature path=".">
<Href mapping="href" />

</Feature>
</Complex>

</FeatureTypeMapping>

</SQLFeatureStore>

70 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

This configuration snippet defines a SQL feature store resource with the following properties:

• JDBC connection resource with identifier inspire is used to connect to the database

• Storage CRS is EPSG:4258, database srid is -1 (inserted geometries are transformed by deegree to the
storage CRS, if necessary)

• Feature types are read from three GML schema files

• A single feature type ad:Address (ad=urn:x-inspire:specification:gmlas:Addresses:3.0) is mapped

• The root table of the mapping is ad_address

• Feature type is mapped to several tables

• Feature id (gml:id) is based on column attr_gml_id, prefixed by AD_ADDRESS__

• For insert transactions, new values for column attr_gml_id in the root table are created using the UUID
generator. For the joined tables, the database has to create new primary keys value automatically (primary
key columns must have a trigger or a suitable type such as SERIAL in PostgreSQL)

6.5.3 Overview of configuration options

The SQL feature store configuration format is defined by schema file
http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd. The following table lists all available con-
figuration options (the complex ones contain nested options themselves). When specifying them, their order must
be respected:

Option Cardi-
nality

Value Description

<JDBCConnId> 1 String Identifier of the database connection
<DisablePostFiltering>0..1 Empty If present, queries that require in-memory filtering are

rejected
<StorageCRS> 0..1 Com-

plex
CRS of stored geometries

<GMLSchema> 0..n String Path/URL to GML application schema files/dirs to read
feature types from

<BLOBMapping> 0..1 Com-
plex

Activates a special mapping mode that uses BLOBs for
storing features

<FeatureTypeMapping>0..n Com-
plex

Mapping between a feature type and a database table

The usage of these options and their sub-options is explained in the remaining sections.

6.5.4 Mapping tables to simple feature types

This section describes how to define the mapping of database tables to simple feature types. Each
<FeatureTypeMapping> defines the mapping between one table and one feature type:

SQL feature store: Mapping a single table

<SQLFeatureStore configVersion="3.2.0"
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/sql
http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd">
<JDBCConnId>postgis</JDBCConnId>
<FeatureTypeMapping table="country"/>

</SQLFeatureStore>

6.5. SQL feature store 71

http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd

deegree Webservices, Release 3.3.10

This example assumes that the database contains a table named country within the default database schema
(for PostgreSQL public). Alternatively, you can qualify the table name with the database schema, such as
public.country. The feature store will try to automatically determine the columns of the table and derive a
suitable feature type:

• Feature type name: app:country (app=http://www.deegree.org/app)

• Feature id (gml:id) based on primary key column of table country

• Every primitive column (number, string, date) is used as a primitive property

• Every geometry column is used as a geometry property

A single configuration file may map more than one table. The following example defines two feature types, based
on tables country and cities.

SQL feature store: Mapping two tables

<SQLFeatureStore configVersion="3.2.0"
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/sql
http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd">
<JDBCConnId>postgis</JDBCConnId>
<FeatureTypeMapping table="country"/>
<FeatureTypeMapping table="city"/>

</SQLFeatureStore>

There are several options for <FeatureTypeMapping> that give you more control over the derived feature
type definition. The following table lists all available options (the complex ones contain nested options them-
selves):

Option Cardinal-
ity

Value Description

table 1 String Name of the table to be mapped (can be qualified with database
schema)

name 0..1 QName Name of the feature type
<FIDMapping> 0..1 Com-

plex
Defines the mapping of the feature id

<Primitive> 0..n Com-
plex

Defines the mapping of a primitive-valued column

<Geometry> 0..n Com-
plex

Defines the mapping of a geometry-valued column

Hint: The order of child elements <Primitive> and <Geometry> is not restricted. They may appear in any
order.

These options and their sub-options are explained in the following subsections.

Customizing the feature type name

By default, the name of a mapped feature type will be derived from the table name. If the table is named country,
the feature type name will be app:country (app=http://www.deegree.org/app). The name attribute allows to
set the feature type name explicity. In the following example, it will be app:Land (Land is German for country).

72 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

SQL feature store: Customizing the feature type name

...
<FeatureTypeMapping table="country" name="Land"/>

...

The name of a feature type is always a qualified XML name. You can use standard XML namespace binding
mechanisms to control the namespace and prefix of the feature type name:

SQL feature store: Customizing the feature type namespace and prefix

...
<FeatureTypeMapping xmlns:myns="http://mydomain.org/myns" table="country" name="myns:Land"/>

...

Customizing the feature id

By default, values for the feature id (gml:id attribute in GML) will be based on the primary key column of the
mapped table. Values from this column will be prepended with a prefix that is derived from the feature type name.
For example, if the feature type name is app:Country, the prefix is APP_COUNTRY. The feature instance that
is built from the table row with primary key 42 will have feature id APP_COUNTRY42.

If this is not what you want, or automatic detection of the primary key column fails, customize the feature id
mapping using the <FIDMapping> option:

SQL feature store: Customizing the feature id mapping

...
<FeatureTypeMapping table="country">
<FIDMapping prefix="C_">
<Column name="fid" />

</FIDMapping>
</FeatureTypeMapping>
...

Here are the options for <FIDMapping>:

Option Cardinality Value Description
prefix 0..1 String Feature id prefix, default: derived from feature type name
<Column> 1..n Complex Column that stores (a part of) the feature id

As <Column>may occur more than once, you can define that the feature id is constructed from multiple columns:

SQL feature store: Customizing the feature id mapping

...
<FeatureTypeMapping table="country">
<FIDMapping prefix="C_">
<Column name="key1" />
<Column name="key2" />

</FIDMapping>
</FeatureTypeMapping>
...

Here are the options for <Column>:

6.5. SQL feature store 73

deegree Webservices, Release 3.3.10

Option Cardinality Value Description
name 1 String Name of the database column
type 0..1 String Column type (string, boolean, decimal, double or integer), default: auto

Hint: Technically, the feature id prefix is important to determine the feature type when performing queries by
feature id. Every <FeatureTypeMapping> must have a unique feature id prefix.

Customizing the mapping between columns and properties

By default, the SQL feature store will try to automatically determine the columns of the table and derive a suitable
feature type:

• Every primitive column (number, string, date) is used as a primitive property

• Every geometry column is used as a geometry property

If this is not what you want, or automatic detection of the column types fails, use <Primitive> and
<Geometry> to control the property definitions of the feature type and the column-to-property mapping:

SQL feature store: Customizing property definitions and the column-to-property mapping

...
<FeatureTypeMapping table="country">
<Primitive path="property1" mapping="prop1" type="string"/>
<Geometry path="property2" mapping="the_geom" type="Point">

<StorageCRS srid="-1">EPSG:4326</StorageCRS>
</Geometry>
<Primitive path="property3" mapping="prop2" type="integer"/>

</FeatureTypeMapping>
...

This example defines a feature type with three properties:

• property1, type: primitive (string), mapped to column prop1

• property2, type: geometry (point), mapped to column the_geom, storage CRS is EPSG:4326,
database srid is -1

• property3, type: primitive (integer), mapped to column prop2

The following table lists all available configuration options for <Primitive> and <Geometry>:

Option Cardinal-
ity

Value Description

path 1 QName Name of the property
mapping 1 String Name of the database column
type 1 String Property/column type
<Join> 0..1 Com-

plex
Defines a change in the table context

<CustomConverter>0..1 Com-
plex

Plugs-in a specialized DB-to-ObjectModel converter
implementation

<StorageCRS> 0..1 Com-
plex

CRS of stored geometries and database srid (only for
<Geometry>)

6.5.5 Mapping GML application schemas

The former section assumed a mapping configuration that didn’t use a given GML application schema. If a
GML application schema is available and specified using <GMLSchema>, the mapping possibilities and available
options are extended. We refer to these two modes as table-driven mode (without GML schema) and schema-
driven mode (with GML schema).

74 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Here’s a comparison of table-driven and schema-driven mode:

Table-driven mode Schema-driven mode
GML application schema Derived from tables Must be provided
Data model (feature types) Derived from tables Derived from GML app schema
GML version Any (GML 2, 3.0, 3.1, 3.2) Fixed to version of app schema
Mapping principle Property to table column XPath-based or BLOB-based
Supported mapping complexity Low Very high

Hint: If you want to create a relational mapping for an existing GML application schema (e.g. INSPIRE
Data Themes, GeoSciML, CityGML, XPlanung, AAA), always copy the schema files into the appschemas/
directory of your workspace and reference the schema in your configuration.

In schema-driven mode, the SQL feature store extracts detailed feature type definitions and property declarations
from GML application schema files. A basic configuration for schema-driven mode defines the JDBC connection
id, the general CRS of the stored geometries and one or more GML application schema files:

SQL FeatureStore (schema-driven mode): Skeleton config

<SQLFeatureStore configVersion="3.2.0"
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/feature/sql
http://schemas.deegree.org/datasource/feature/sql/3.2.0/sql.xsd">

<JDBCConnId>postgis</JDBCConnId>
<StorageCRS dim="2D" srid="-1">EPSG:4258</StorageCRS>
<GMLSchema>../../appschemas/inspire/annex1/ad_address.xsd</GMLSchema>

</SQLFeatureStore>

Recommended workflow

Hint: This section assumes that you already have an existing database that you want to map to a GML application
schema. If you want to derive a database model from a GML application schema, see Auto-generating a mapping
configuration and tables.

Manually creating a mapping for a rich GML application schema may appear to be a dauting task at first sight.
Especially when you are still trying to figure out how the configuration concepts work, you will be using a lot of
trial-and-error. Here are some general practices to make this as painless as possible.

• Map one property of a feature type at a time.

• Use the Reload link in the services console to activate changes.

• After changing the configuration file, make sure that the status of the feature store stays green (in the
console). If an exclamation mark occurs, you have an error in your configuration. Check the error message
and fix it.

• Check the results of your change (see below)

• Once you’re satisfied, move on the next property (or feature type)

Set up a WFS configuration, so you can use WFS GetFeature-requests to check whether your feature mapping
works as expected. You can use your web browser for that. After each configuration change, perform a GetFeature-
request to see the effect. Suitable WFS requests depend on the WFS version, the GML version and the name of
the feature type. Here are some examples:

• WFS 1.0.0 (GML 2): http://localhost:8080/services?service=WFS&version=1.0.0&request=GetFeature&typeName=ad:Address&maxFeatures=1

6.5. SQL feature store 75

http://localhost:8080/services?service=WFS&version=1.0.0&request=GetFeature&typeName=ad:Address&maxFeatures=1

deegree Webservices, Release 3.3.10

• WFS 1.1.0 (GML 3.1): http://localhost:8080/services?service=WFS&version=1.1.0&request=GetFeature&typeName=ad:Address&maxFeatures=1

• WFS 2.0.0 (GML 3.2): http://localhost:8080/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

In order to successfully create a mapping for a feature type from a GML application schema, you have to know
the structure and the data types of the feature type. For example, if you want to map feature type ad:Address
from INSPIRE Annex I, you have to know that it has a required property called ad:inspireId that has a
child element with name base:Identifier. Here’s a list of possible options to learn the data model of an
application schema:

• Manually (or with the help of a generic XML tool such as XMLSpy) analyze the GML application schema
to determine the feature types and understand their data model

• Use the services console to auto-generate a mapping configuration (see Auto-generating a mapping
configuration and tables). It should reflect the structure and datatypes correctly. Auto-generate the
mapping, create a copy of the file and start with a minimal version (FeatureTypeMapping by
FeatureTypeMapping, property by property). Adapt it to your own database tables and columns and
remove optional elements and attributes that you don’t want to map.

• Use the deegree support options (mailing lists, commercial support) to get help.

Hint: The deegree project aims for a user-interface to help with all steps of creating mapping configurations. If
you are interested in working on this (or funding it), don’t hesitate to contact the project bodies.

Mapping rich feature types

In schema-driven mode, the <FeatureTypeMapping> element basically works as in table-driven mode (see
Mapping tables to simple feature types). It defines a mapping between a table in the database and a feature type.
However, there are additional possibilities and it’s usually more suitable to focus on feature types and XML nodes
instead of tables and table columns. Here’s an overview of the <FeatureTypeMapping> options and their
meaning in schema-driven mode:

Option Cardinal-
ity

Value Description

table 1 String Name of the table to be mapped (can be qualified with database
schema)

name 0..1 QName Name of the feature type
<FIDMapping> 1 Com-

plex
Defines the mapping of the feature id

<Primitive> 0..n Com-
plex

Defines the mapping of a primitive-valued node

<Geometry> 0..n Com-
plex

Defines the mapping of a geometry-valued node

<Complex> 0..n Com-
plex

Defines the mapping of a complex-valued node

<Feature> 0..n Com-
plex

Defines the mapping of a feature-valued node

Hint: The order of child elements <Primitive>, <Geometry>, <Complex> and <Feature> is not
restricted. They may appear in any order.

We’re going to explore the additional options by describing the necessary steps for mapping fea-
ture type ad:Address (from INSPIRE Annex I) to an example database. Start with a single
<FeatureTypeMapping>. Provide the table name and the mapping for the feature identifier. The example
uses a table named ad_address and a key column named fid:

76 Chapter 6. Feature stores

http://localhost:8080/services?service=WFS&version=1.1.0&request=GetFeature&typeName=ad:Address&maxFeatures=1
http://localhost:8080/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

deegree Webservices, Release 3.3.10

SQL feature store (schema-driven mode): Start configuration

...
<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>

<Column name="fid" />
</FIDMapping>

</FeatureTypeMapping>
...

Tip: In schema-driven mode, there is no automatic detection of columns, column types or primary keys. You
always have to specify <FIDMapping>.

Tip: If this configuration matches your database and you have a working WFS resource,
you should be able to query the feature type (although no properties will be returned):
http://localhost:8080/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

Mapping rich feature types works by associating XML nodes of a feature instance with rows and columns
in the database. The table context (the current row) is changed when necessary. In the beginning of a
<FeatureTypeMapping>, the current context node is an ad:Address element and the current table context
is a row of table ad_address. The first (required) property that we’re going to map is ad:inspireId.
The schema defines that ad:inspireId has as child element named base:Identifier which in turn
has two child elements named base:localId and base:namespace. Lets’s assume that we have a col-
umn localid in our table, that we want to map to base:localId, but for base:namespace, we don’t
have a corresponding column. We want this element to have the fixed value NL.KAD.BAG for all instances of
ad:Address. Here’s how to do it:

SQL feature store (schema-driven mode): Complex elements and constant mappings

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>

<Column name="fid" />
</FIDMapping>

<Complex path="ad:inspireId">
<Complex path="base:Identifier">
<Primitive path="base:localId" mapping="localid"/>
<Primitive path="base:namespace" mapping="’NL.KAD.BAG’"/>

</Complex>
</Complex>

</FeatureTypeMapping>

There are several things to observe here. The Complex element occurs twice. In the path attribute of the
first occurrence, we specified the qualified name of the (complex) property we want to map (ad:inspireId).
The nested Complex targets child element base:Identifier of ad:inspireId. And finally, the
Primitive elements specify that child element base:localId is mapped to column localid and element
base:namespace is mapped to constant NL.KAD.BAG (note the single quotes around NL.KAD.BAG).

To summarize:

• Complex is used to select a (complex) child element to be mapped. It is a container for child mapping
elements (Primitive, Geometry, Complex or Feature)

• In the mapping attribute of Primitive, you can also use constants, not only column names

The next property we want to map is ad:position. It contains the geometry of the address, but the actual GML
geometry is nested on a deeper level and the property can occur multiple times. In our database, we have a table

6.5. SQL feature store 77

http://localhost:8080/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

deegree Webservices, Release 3.3.10

named ad_address_ad_position with columns fk (foreign key to ad_address) and value (geometry).
Here’s the extended mapping:

SQL feature store (schema-driven mode): Join elements and XPath expressions

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>

<Column name="fid" />
</FIDMapping>

<Complex path="ad:inspireId">
<Complex path="base:Identifier">
<Primitive path="base:localId" mapping="localid" />
<Primitive path="base:namespace" mapping="’NL.KAD.BAG’" />

</Complex>
</Complex>

<Complex path="ad:position">
<Join table="ad_address_ad_position" fromColumns="fid" toColumns="fk" />
<Complex path="ad:GeographicPosition">

<Complex path="ad:geometry">
<Geometry path="." mapping="value" />

</Complex>
<Complex path="ad:specification">
<Primitive path="text()" mapping="’entrance’" />

</Complex>
<Complex path="ad:method">
<Primitive path="text()" mapping="’byOtherParty’" />

</Complex>
<Primitive path="ad:default" mapping="’true’" />

</Complex>
</Complex>

</FeatureTypeMapping>

Again, the Complex element is used to drill into the XML structure of the property and several elements are
mapped to constant values. But there are also new things to observe:

• The first child element of a <Complex> (or <Primitive>, <Geometry> or <Feature>) can be
<Join>. <Join> performs a table change: table rows corresponding to ad:position are not stored
in the root feature type table (ad_address), but in a joined table. All siblings of <Join> (or their
children) refer to this joined table (ad_address_ad_position). The join condition that determines
the related rows in the joined table is ad_address.fid=ad_address_ad_position.fk. <Join>
is described in detail in the next section.

• Valid expressions for path can also be . (current node) and text() (primitive value of the current node).

Let’s move on to the mapping of property ad:component. This property can occur multiple times and contains
(a reference to) another feature.

78 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

SQL feature store (schema-driven mode): Feature elements

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">
[...]
<Complex path="ad:component">

<Join table="ad_address_ad_component" fromColumns="fid" toColumns="fk"/>
<Feature path=".">
<Href mapping="href"/>

</Feature>
</Complex>

</FeatureTypeMapping>

As in the mapping of ad:position, a <Join> is used to change the table context. The table that stores the
information for ad:component properties is ad_address_ad_component. The <Feature> declares
that we want to map a feature-valued node and it’s <Href> sub-element defines that column href stores the
value for the xlink:href.

Here is an overview on all options for <Complex> elements:

Option Cardinal-
ity

Value Description

path 1 QName Name/XPath-expression that determines the element to be
mapped

<Join> 0..1 Com-
plex

Defines a change in the table context

<CustomConverter>0..1 Com-
plex

Plugs-in a specialized DB-to-ObjectModel converter
implementation

<Primitive> 0..n Com-
plex

Defines the mapping of a primitive-valued node

<Geometry> 0..n Com-
plex

Defines the mapping of a geometry-valued node

<Complex> 0..n Com-
plex

Defines the mapping of a complex-valued node

<Feature> 0..n Com-
plex

Defines the mapping of a feature-valued node

Hint: The order of child elements <Primitive>, <Geometry>, <Complex> and <Feature> is not
restricted. They may appear in any order.

Here is an overview on all options for <Feature> elements:

Option Cardinal-
ity

Value Description

path 1 QName Name/XPath-expression that determines the element to be
mapped

<CustomConverter>0..1 Com-
plex

Plugs-in a specialized DB-to-ObjectModel converter
implementation

<Href> 0..1 Com-
plex

Defines the column that stores the value for xlink:href

Changing the table context

At the beginning of a <FeatureTypeMapping>, the current table context is the one specified by the table
attribute. In the following example snippet, this would be table ad_address.

6.5. SQL feature store 79

deegree Webservices, Release 3.3.10

SQL feature store: Initial table context

<FeatureTypeMapping name="ad:Address" table="ad_address">
[...]
<Complex path="gml:identifier">

<Primitive path="text()" mapping="gml_identifier"/>
<Primitive path="@codeSpace" mapping="gml_identifier_attr_codespace"/>

</Complex>
[...]

</FeatureTypeMapping>

Note that all mapped columns stem from table ad_address. This is fine, as each feature can only have a single
gml:identifier property. However, when mapping a property that may occur any number of times, we will
have to access the values for this property in a separate table.

SQL feature store: Changing the table context

<FeatureTypeMapping name="ad:Address" table="ad_address">
[...]
<Complex path="gml:identifier">

<Primitive path="text()" mapping="gml_identifier"/>
<Primitive path="@codeSpace" mapping="gml_identifier_attr_codespace"/>

</Complex>
[...]
<Complex path="ad:position">

<Join table="ad_address_ad_position" fromColumns="attr_gml_id" toColumns="parentfk" orderColumns="num" numbered="true"/>
<Complex path="ad:GeographicPosition">
<Complex path="ad:geometry">
<Primitive path="@nilReason" mapping="ad_geographicposition_ad_geometry_attr_nilreason"/>
<Primitive path="@gml:remoteSchema" mapping="ad_geographicposition_ad_geometry_attr_gml_remoteschema"/>
<Primitive path="@owns" mapping="ad_geographicposition_ad_geometry_attr_owns"/>
<Geometry path="." mapping="ad_geographicposition_ad_geometry_value"/>

</Complex>
[...]
<Primitive path="ad:default" mapping="ad_geographicposition_ad_default"/>

</Complex>
</Complex>
[...]

</FeatureTypeMapping>

In this example, property gml:identifier is mapped as before (the data values stem from table
ad_address). In contrast to that, property ad:position can occur any number of times for a single
ad_address feature instance. In order to reflect that in the relational model, the values for this property have to
be taken from/stored in a separate table. The feature type table (ad_address) must have a 1:n relation to this
table.

The <Join> element is used to define such a change in the table context (in other words: a relation/join
between two tables). A <Join> element may only occur as first child element of any of the mapping el-
ements (<Primitive>, <Geometry>, <Feature> or <Complex>). It changes from the current ta-
ble context to another one. In the example, the table context in the mapping of property ad:position
is changed from ad_address to ad_address_ad_position. All mapping instructions that follow
the <Join> element refer to the new table context. For example, the geometry value is taken from
ad_address_ad_position.ad_geographicposition_ad_geometry_value.

The following table lists all available options for <Join> elements:

80 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Option Cardi-
nality

Value Description

table 1..1 String Name of the target table to change to.
fromColumns 1..1 String One or more columns that define the join key in the source table.
toColumns 1..1 String One or more columns that define the join key in the target table.
orderColumns 0..1 String One or more columns hat define the order of the joined rows.
numbered 0..1 Boolean Set to true, if orderColumns refers to a single column that contains

natural numbers [1,2,3,...].
<AutoKeyColumn>0..n Com-

plex
Columns in the target table that store autogenerated keys (only
required for transactions).

Attributes fromColumns, toColumns and orderColumns may each contain one or more columns. When
specifying multiple columns, they must be given as a whitespace-separated list. orderColumns is used to force
a specific ordering on the joined table rows. If this attribute is omitted, the order of joined rows is not defined and
reconstructed feature instances may vary each time they are fetched from the database. In the above example, this
would mean that the multiple ad:position properties of an ad:Address feature may change their order.

In case that the order column stores the child index of the XML element, the numbered attribute should be set
to true. In this special case, filtering on property names with child indexes will be correctly mapped to SQL
WHERE clauses as in the following WFS example request.

SQL feature store: WFS query with child index

<GetFeature version="2.0.0" service="WFS">
<Query typeNames="ad:Address">
<fes:Filter>

<fes:BBOX>
<fes:ValueReference>ad:position[3]/ad:GeographicPosition/ad:geometry</fes:ValueReference>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4258">

<gml:lowerCorner>52.691 5.244</gml:lowerCorner>
<gml:upperCorner>52.711 5.245</gml:upperCorner>

</gml:Envelope>
</fes:BBOX>

</fes:Filter>
</Query>

</GetFeature>

In the above example, only those ad:Address features will be returned where the geometry in the third
ad:position property has an intersection with the specified bounding box. If only other ad:position
properties (e.g. the first one) matches this constraint, they will not be included in the output.

The <AutoKeyColumn> configuration option is only required when you want to use transactions on your feature
store and your relational model is non-canonical. Ideally, the mapping will only change the table context in case
the feature type model allows for multiple child elements at that point. In other words: if the XML schema has
maxOccurs set to unbounded for an element, the relational model should have a corresponding 1:n relation.
For a 1:n relation, the target table of the context change should have a foreign key column that points to the primary
key column of the source table of the context change. This is important, as the SQL feature store has to propagate
keys from the source table to the target table and store them there as well.

If the joined table is the origin of other joins, than it is important that the SQL feature store can generate primary
keys for the join table. If not configured otherwise, it is assumed that column id stores the primary key and that
the database will auto-generate values on insert using database mechanisms such as sequences or triggers.

If this is not the case, use the AutoKeyColumn options to define the columns that make up the primary key in
the join table and how the values for these columns should be generated on insert. Here’s an example:

6.5. SQL feature store 81

deegree Webservices, Release 3.3.10

SQL feature store: Key propagation for transactions

[...]
<Join table="B" fromColumns="id" toColumns="parentfk" orderColumns="num" numbered="true">
<AutoKeyColumn name="pk1">

<UUIDGenerator />
</AutoKeyColumn>
[...]
<Join table="C" fromColumns="pk1" toColumns="parentfk" />
[...]

</Join>
[...]

In this example snippet, the primary key for table B is stored in column pk1 and values for this column are
generated using the UUID generator. There’s another change in the table context from B to C. Rows in table
C have a key stored in column parentfk that corresponds to the B.pk1. On insert, values generated for
B.pk1 will be propagated and stored for new rows in this table as well. The following table lists the options for
<AutoKeyColumn> elements.

Inside a <AutoKeyColumn>, you may use the same key generators that are available for feature id generation
(see above).

BLOB mapping

An alternative approach to mapping each feature type from an application schema using
<FeatureTypeMapping> is to specify a single <BLOBMapping> element. This activates a different
storage strategy based on a fixed database schema. Central to this schema is a table that stores every feature
instance (and all of it’s properties) as a BLOB (binary large object).

Here is an overview on all options for <BLOBMapping> elements:

Option Cardinal-
ity

Value Description

<BlobTable> 0..1 String Database table that stores features, default:
gml_objects

<FeatureTypeTable>0..1 String Database table that stores feature types, default:
feature_types

The central table (controlled by <BlobTable>) uses the following columns:

Column PostGIS type Used for
id serial Primary key
gml_id text Feature identifier (used for id queries and resolving xlink references)
gml_bounded_by geometry Bounding box (used for spatial queries)
ft_type smallint Feature type identifier (used to narrow the result set)
binary_object bytea Encoded feature instance

The other table (controlled by <FeatureTypeTable>) stores a mapping of feature type names to feature type
identifiers:

Column PostGIS type Used for
id smallint Primary key
qname text Name of the feature type
bbox geometry Aggregated bounding box for all features of this type

Hint: In order for <BLOBMapping> to work, you need to have the correct tables in your database and initialize
the feature type table with the names of all feature types you want to use. We recommend not to do this manually,
see Auto-generating a mapping configuration and tables. The wizard will also create suitable indexes to speed up
queries.

82 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Hint: You may wonder how to get data into the database in BLOB mode. As for standard mapping, you can do
this by executing WFS-T requests or by using the feature store loader. Its usage is described in the last steps of
Auto-generating a mapping configuration and tables.

Hint: In BLOB mode, only spatial and feature id queries can be mapped to SQL WHERE-constraints. All other
kinds of filter conditions are performed in memory. See Evaluation of query filters for more information.

6.5.6 Transactions and feature id generation

The mapping defined by a <FeatureTypeMapping> element generally works in both directions:

• Table-to-feature-type (query): Feature instances are created from table rows

• Feature-type-to-table (insert): New table rows are created for inserted feature instances

However, there’s a caveat for inserts: The SQL feature store has to know how to obtain new and unique feature
ids.

When features are inserted into a SQL feature store (for example via a WFS transaction), the client can choose
between different id generation modes. These modes control whether feature ids (the values in the gml:id attribute)
have to be re-generated. There are three id generation modes available, which directly relate to the WFS 1.1.0
specification:

• UseExisting: The feature store will use the original gml:id values that have been provided in the input.
This may lead to errors if the provided ids are already in use or if the format of the id does not match the
configuration.

• GenerateNew: The feature store will discard the original gml:id values and use the configured generator
to produce new and unique identifiers. References in the input (xlink:href) that point to a feature with an
reassigned id are fixed as well, so reference consistency is ensured.

• ReplaceDuplicate: The feature store will try to use the original gml:id values that have been provided
in the input. If a certain identifier already exists in the database, the configured generator is used to produce
a new and unique identifier. NOTE: Support for this mode is not implemented yet.

Hint: In a WFS 1.1.0 insert request, the id generation mode is controlled by attribute idGenMode. WFS 1.0.0
and WFS 2.0.0 don’t support to specify it on a request basis. However, in the deegree WFS configuration you can
control it in the option EnableTransactions.

In order to generate the required ids for GenerateNew, you can choose between different generators. These are
configured in the <FIDMapping> child element of <FeatureTypeMapping>:

Auto id generator

The auto id generator depends on the database to provide new values for the feature id column(s) on insert. This
requires that the used feature id columns are configured appropriately in the database (e.g. that they have a trigger
or a suitable column type such as SERIAL in PostgreSQL).

SQL feature store: Auto id generator example

[...]
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<AutoIDGenerator />

</FIDMapping>
[...]

6.5. SQL feature store 83

deegree Webservices, Release 3.3.10

This snippet defines the feature id mapping and the id generation behaviour for a feature type called ad:Address

• When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml_id to create the exported
feature id. If attr_gml_id contains the value 42 in the database, the feature instance that is created from
this row will have the value AD_ADDRESS_42.

• On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESS_$. The prefix
AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column attr_gml_id.

• On insert (mode=GenerateNew), the database must automatically create a new value for column
attr_gml_id which will be the postfix of the newly assigned feature id.

UUID generator

The UUID generator generator uses Java’s UUID implementation to generate new and unique identifiers. This
requires that the database column for the id is a character column that can store strings with a length of 36
characters and that the database does not perform any kind of insertion value generation for this column (e.g
triggers).

SQL feature store: UUID generator example

[...]
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<UUIDGenerator />

</FIDMapping>
[...]

This snippet defines the feature id mapping and the id generation behaviour for a feature type called ad:Address

• When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml_id to create the exported
feature id. If attr_gml_id contains the value 550e8400-e29b-11d4-a716-446655440000
in the database, the feature instance that is created from this row will have the value
AD_ADDRESS_550e8400-e29b-11d4-a716-446655440000.

• On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESS_$. The prefix
AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column attr_gml_id.

• On insert (mode=GenerateNew), a new UUID is generated and stored in column attr_gml_id.

Sequence id generator

The sequence id generator queries a database sequence to generate new and unique identifiers. This requires that
the database column for the id is compatible with the values generated by the sequence and that the database does
not perform any kind of automatical value insertion for this column (e.g triggers).

SQL feature store: Database sequence generator example

[...]
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<SequenceIDGenerator sequence="SEQ_FID">

</FIDMapping>
[...]

This snippet defines the feature id mapping and the id generation behaviour for a feature type called ad:Address

84 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

• When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml_id to create the exported
feature id. If attr_gml_id contains the value 42 in the database, the feature instance that is created from
this row will have the value AD_ADDRESS_42.

• On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESS_$. The prefix
AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column attr_gml_id.

• On insert (mode=GenerateNew), the database sequence SEQ_FID is queried for new values to be stored in
column attr_gml_id.

6.5.7 Evaluation of query filters

The SQL feature store always tries to map filter conditions (e.g. from WFS GetFeature requests or when
accessed by the WMS) to SQL-WHERE conditions. However, this is not always possible. Sometimes a filter uses
an expression that just can not be mapped to an equivalent SQL-WHERE clause. For example when using BLOB
mapping and the filter is not based on a feature id or a spatial constraint.

In such cases, the SQL feature store falls back to in-memory filtering. It will reconstruct feature by feature from
the database and evaluate the filter in memory. If the filter matches, it will be included in the result feature stream.
If not, it is skipped.

The downside of this strategy is that it can put a serious load on your server. If you want to turn off in-memory fil-
tering completely, use <DisablePostFiltering>. If this option is specified and a filter requires in-memory
filtering, the query will be rejected.

6.5.8 Auto-generating a mapping configuration and tables

Although this functionality is still in beta stage, the services console can be used to automatically derive an SQL
feature store configuration and set up tables from an existing GML application schema. If you don’t have an
existing database structure that you want to use, you can use this option to create a working database set up very
quickly. And even if you have an existing database you need to map manually, this functionality can be prove very
helpful to generate a valid mapping configuration to start with.

Hint: As every (optional) attribute and element will be considered in the mapping, you may easily end up with
hundreds of tables or columns.

This walkthrough is based on the INSPIRE Annex I schemas, but you should be able to use these instructions
with other GML application schemas as well. Make sure that the INSPIRE workspace has been downloaded and
activated as described in Example workspace 1: INSPIRE Network Services. As another prerequisite, you will
have to create an empty, spatially-enabled PostGIS database that you can connect to from your deegree installation.

Tip: Instead of PostGIS, you can also use an Oracle Spatial or an Microsoft SQL Server database. In order to
enable support for these databases, see Adding database modules.

As a first step, create a JDBC connection to your database. Click server connections -> jdbc and enter inspire
(or an other identifier) as connection id:

Afterwards, click Create new and enter the connection details to your database:

By clicking Test connection, you can ensure that deegree can connect to your database:

If everything works, click Create to finish the creation of your JDBC resource:

Now, change to data stores -> feature. We will have to delete the existing (memory-based) feature store first.
Click Delete:

Enter “inspire” as name for the new feature store, select “SQL” from the drop-down box and click Create new:

Select “Create tables from GML application schema” and click Next:

6.5. SQL feature store 85

deegree Webservices, Release 3.3.10

Figure 6.2: Creating a JDBC connection

Figure 6.3: Creating a JDBC connection

Figure 6.4: Testing the JDBC connection

86 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Figure 6.5: Testing the JDBC connection

Figure 6.6: Deleting the memory-based feature store

Figure 6.7: Creating a new SQL feature store resource

6.5. SQL feature store 87

deegree Webservices, Release 3.3.10

Figure 6.8: Mapping a new SQL feature store configuration

You can now select the GML application schema files to be used. For this walkthrough, tick Addresses.xsd,
AdministrativeUnits.xsd and CadastralParcels.xsd (if you select all schema files, hundreds of
feature types from INPIRE Annex I will be mapped):

Figure 6.9: Selecting the GML schema files to be considered

Hint: This view presents any .xsd files that are located below the appschemas/ directory of your deegree
workspace. If you want to map any other GML application schema (such as GeoSciML or CityGML), place
a copy of the application schema files into the appschemas/ directory (using your favorite method, e.g. a file
browser) and click Rescan. You should now have the option to select the files of this application schema in the
services console view.

Scroll down and click Next.

You will be presented with a rough analysis of the feature types contained in the selected GML application schema
files. Select “Relational” (you may also select BLOB if your prefer this kind of storage) and enter “EPSG:4258”
as storage CRS (this is the code for ETRS89, the recommmended CRS for harmonized INSPIRE datasets). After
clicking Next, an SQL feature store configuration will be automatically derived from the application schema:

Click Save to store this configuration:

88 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Figure 6.10: Selecting the GML schema files to be considered

Figure 6.11: Selecting mapping type and storage CRS

Figure 6.12: The auto-generated SQL feature store configuration

6.5. SQL feature store 89

deegree Webservices, Release 3.3.10

Figure 6.13: Auto-generated SQL statements for creating tables

Now, click Create DB tables. You will be presented with an auto-generated SQL script for creating the required
tables in the database:

Figure 6.14: Auto-generated SQL statements for creating tables

Click Execute. The SQL statements will now be executed against your database and the tables will be created:

Click Start feature store:

Click Reload to force a reinitialization of the other workspace resources. We’re finished. Features access of the
WFS and WMS uses your database now. However, as your database is empty, the WMS will not render anything
and the WFS will not return any features when queried. In order to insert some harmonized INSPIRE features,
click send requests and select one of the insert requests:

Use the third drop-down menu to select an example request. Entries “Insert_200.xml” or “Insert_110.xml” can be
used to insert a small number of INSPIRE Address features using WFS-T insert requests:

Click Send to execute the request. After successful insertion, the database contains a few addresses, and you may
want to move back to the layer overview (see layers). If you activate the AD.Address layer, the newly inserted
features will be rendered by the deegree WMS (look for them in the area of Enkhuizen):

Of course, you can also perform WFS queries against the database backend, such as requesting of INSPIRE
Addresses by street name:

90 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Figure 6.15: Mapping finished

Figure 6.16: Finished

Figure 6.17: WFS-T example requests

6.5. SQL feature store 91

deegree Webservices, Release 3.3.10

Figure 6.18: Ad.Address layer after insertion of example Address features

Figure 6.19: More WFS examples

92 Chapter 6. Feature stores

deegree Webservices, Release 3.3.10

Besides WFS-T requests, there’s another handy option for inserting GML-encoded features. Click data stores ->
feature to access the feature store view again:

Figure 6.20: Accessing the feature store loader

After clicking Loader, you will be presented with a simple view where you can insert a URL of a valid GML
dataset:

Figure 6.21: The feature store loader

Basically, you can use this view to insert any valid, GML-encoded dataset, as long as it conforms to the application
schema. The INSPIRE workspace contains some suitable example datasets, so you may use a file-URL like:

• file:/home/kelvin/.deegree/deegree-workspace-inspire/data/au-provincies.gml

• file:/home/kelvin/.deegree/deegree-workspace-inspire/data/au-gemeenten.gml

• file:/home/kelvin/.deegree/deegree-workspace-inspire/data/au-land.gml

• file:/home/kelvin/.deegree/deegree-workspace-inspire/data/cadastralparcels-limburg.xml

• file:/home/kelvin/.deegree/deegree-workspace-inspire/data/cadastralparcels-northholland.xml

Tip: The above URLs are for a UNIX system with a user named “kelvin”. You will need to adapt the URLs to
match the location of your workspace directory.

6.5. SQL feature store 93

deegree Webservices, Release 3.3.10

After entering the URL, click Import:

Figure 6.22: Imported INSPIRE datasets via the Loader

94 Chapter 6. Feature stores

CHAPTER

SEVEN

TILE STORES

Tile stores are resources that provide access to pre-rendered map tiles. The common use case for tile stores is to
provide data for tile layers.

The remainder of this chapter describes some relevant terms and the tile store configuration files in detail. You can
access this configuration level by clicking on the tile stores link in the administration console. The configuration
files are located in the datasources/tile/ directory of the deegree workspace.

Figure 7.1: Tile store resources provide access to pre-rendered map tiles

7.1 Tile stores, tile data sets and tile matrix sets

A tile store is what you configure in a single tile store configuration file. It defines one or more (stored) tile data
sets. Other resources such as the tile layer configuration usually refer to a specific tile data set from a tile store.

The structure of a tile data set is determined by specifying the identifier of a tile matrix set. Most often, one wants
to define tile data sets that conform to a pre-defined tile matrix set. In that case, one only has to provide the tile
store configuration file.

The term tile matrix set has been coined deliberately to coincide with the same term from the WMTS specification
and refers to structure and spatial properties of the tile matrix. The tile matrix sets (or “quads”) from WMTS 1.0.0
and INSPIRE ViewService 3.1 specifications are already predefined, but additional tile matrix sets may be defined
as well (see below).

Take note that it is not necessary to provide actual tiles for all tiles defined within the tile matrix set, a tile data
set may contain a subset. The only requirement is that you need to fulfill the structure requirements (CRS, size of
tiles, position of tiles in world coordinates, scale).

95

http://www.opengeospatial.org/standards/wmts

deegree Webservices, Release 3.3.10

7.1.1 Pre-defined tile matrix sets

The following table lists the tile matrix sets that are pre-defined in deegree:

Workspace
identifier

Name in
specification

URN Specification document

globalcrs84scale Global-
CRS84Scale

urn:ogc:def:wkss:OGC:1.0:GlobalCRS84ScaleOGC WMTS 1.0.0

globalcrs84pixel Global-
CRS84Pixel

urn:ogc:def:wkss:OGC:1.0:GlobalCRS84PixelOGC WMTS 1.0.0

google-
crs84quad

Google-
CRS84Quad

urn:ogc:def:crs:OGC:1.3:CRS84 OGC WMTS 1.0.0

googlemap-
scompatible

GoogleMap-
sCompatible

urn:ogc:def:wkss:OGC:1.0:GoogleMapsCompatibleOGC WMTS 1.0.0

inspire-
crs84quad

Inspire-
CRS84Quad

n/a INSPIRE View Service
Specification 3.1

You can override these standard definitions by placing an appropriately named file into the
datasources/tile/tilematrixset/ directory of your workspace. It is recommended to always
use lower case file names to avoid confusion.

7.1.2 User-defined tile matrix sets

There are currently two ways to configure tile matrix sets. The first way is to state the structure of the matrices
explicitly (described here), the second will extract the structure from a tiled GeoTIFF (BIGTIFF) file (possibly
with overlays, described in the GeoTIFF section).

Like everything else in the deegree workspace, defining a tile matrix set means placing a configuration file into a
standard location, in this case the datasources/tile/tilematrixset directory.

Let’s have a look at an example for the explicit configuration:

<TileMatrixSet xmlns="http://www.deegree.org/datasource/tile/tilematrixset" configVersion="3.2.0">

<CRS>urn:ogc:def:crs:OGC:1.3:CRS84</CRS>

<TileMatrix>
<Identifier>1e6</Identifier>
<ScaleDenominator>1e6</ScaleDenominator>
<TopLeftCorner>-180 84</TopLeftCorner>
<TileWidth>256</TileWidth>
<TileHeight>256</TileHeight>
<MatrixWidth>60000</MatrixWidth>
<MatrixHeight>50000</MatrixHeight>

</TileMatrix>
<TileMatrix>
<Identifier>2.5e6</Identifier>
<ScaleDenominator>2.5e6</ScaleDenominator>
<TopLeftCorner>-180 84</TopLeftCorner>
<TileWidth>256</TileWidth>
<TileHeight>256</TileHeight>
<MatrixWidth>9000</MatrixWidth>
<MatrixHeight>7000</MatrixHeight>

</TileMatrix>

</TileMatrixSet>

As you can see, the format is almost identical to the one from the WMTS capabilities documents. A tile matrix set
is always defined for a single coordinate system, and contains one or more tile matrices. Each tile matrix has an
identifier, a specific scale, an origin (the top left corner in world coordinates), defines a tile width/height in pixels
and specifies how many tiles there are in x and y direction.

96 Chapter 7. Tile stores

deegree Webservices, Release 3.3.10

You do not need to explicitly specify the envelope, it will be calculated automatically from the values you provide.
Keep in mind that the conversion between scale and resolution uses the WMTS conversion factor of approx.
111319 in case of degree based coordinate systems (that’s important so the envelope is calculated correctly).

7.2 GeoTIFF tile store

The GeoTIFF tile store can be used to configure tile data sets based on GeoTIFF/BIGTIFF files. The tile store is
currently read-only. The requirements for the GeoTIFFs are:

• it must be created as BIGTIFF (eg. with GDAL using the -co BIGTIFF=YES option)

• it must be created as a tiled tiff (eg. with GDAL using the -co TILED=YES option)

• it can contain overviews (it is best to use a recent GDAL version >= 1.8.0, where you can use
GDAL_TIFF_OVR_BLOCKSIZE to specify the overview tile size)

• it is recommended that the overviews contain the same tile size as the main level

• it must contain the envelope as GeoTIFF tags in the tiff (don’t use world files)

• it is recommended that the CRS is contained as GeoTIFF tag (but can be overridden in the tile matrix set
config, see below)

To make it easy to create a WMTS based on a GeoTIFF, a tile matrix set can be generated from the GeoTIFF
structure, using the method described further down. But if you manage to generate your TIFF files to fit the
structure of another matrix set it is just as well (the envelope of the GeoTIFF can be a subset of the tile matrix
set’s envelope).

Let’s have a look at an example configuration:

<GeoTIFFTileStore xmlns="http://www.deegree.org/datasource/tile/geotiff" configVersion="3.2.0">

<TileDataSet>
<Identifier>test</Identifier>
<TileMatrixSetId>utah</TileMatrixSetId>
<File>../../data/test.tif</File>
<ImageFormat>image/png</ImageFormat>

</TileDataSet>
...
</GeoTIFFTileStore>

(You can define multiple tile data sets within one tile store.)

• The identifier is optional, and defaults to the base name of the file (in this example test.tif)

• The tile matrix set id references the tile matrix set

• obviously you need to point to the GeoTIFF file

• The image format specifies the output image format, this is relevant if you use the tile store for a WMTS.
The default is image/png.

To generate a tile matrix set from the GeoTIFF, put a file into the datasources/tile/tilematrixset/ directory. See how
it must look like:

<GeoTIFFTileMatrixSet xmlns="http://www.deegree.org/datasource/tile/tilematrixset/geotiff" configVersion="3.2.0">
<StorageCRS>EPSG:26912</StorageCRS>
<File>../../../data/utah.tif</File>

</GeoTIFFTileMatrixSet>

The storage crs is optional if the file contains an appropriate GeoTIFF tag, but can be used to override it.

7.2. GeoTIFF tile store 97

deegree Webservices, Release 3.3.10

7.3 File system tile store

The file system tile store can be used to provide tiles from tile cache like directory hierarchies. This tile store is
read-write.

Let’s explain the configuration using an example:

<FileSystemTileStore xmlns="http://www.deegree.org/datasource/tile/filesystem" configVersion="3.2.0">

<TileDataSet>
<Identifier>layer1</Identifier>
<TileMatrixSetId>inspirecrs84quad</TileMatrixSetId>
<TileCacheDiskLayout>

<LayerDirectory>../../data/tiles/layer1</LayerDirectory>
<FileType>png</FileType>

</TileCacheDiskLayout>
</TileDataSet>

...
</FileSystemTileStore>

(You can define multiple tile data sets within one tile store.)

• The identifier is optional, default is the layer directory base name

• The tile matrix set id references the tile matrix set

• Currently only the tile cache disk layout is supported. Just point to the layer directory and specify the file
type of the images (png is recommended, but most image formats are supported)

Please note that if you use external tools to seed the tile store, you need to make sure the resulting structure is
compatible. The 00 directory corresponds to the first tile matrix of the referenced tile matrix set, 01 to the second
tile matrix and so on.

7.4 Remote WMS tile store

The remote WMS tile store can be used to generate tiles on-the-fly from a WMS service. This tile store is read-
only.

While you can configure multiple tile data sets in one remote WMS tile store configuration, they will all be based
on one WMS.

Let’s have a look at an example:

<RemoteWMSTileStore xmlns="http://www.deegree.org/datasource/tile/remotewms" configVersion="3.2.0">

<RemoteWMSId>wms1</RemoteWMSId>

<TileDataSet>
<Identifier>satellite</Identifier>
<TileMatrixSetId>inspirecrs84quad</TileMatrixSetId>
<OutputFormat>image/png</OutputFormat>
<RequestParams>

<Layers>SatelliteProvo</Layers>
<Styles>default</Styles>
<Format>image/png</Format>
<CRS>EPSG:4326</CRS>

</RequestParams>
</TileDataSet>

...
</RemoteWMSTileStore>

• The remote wms id is mandatory, and must point to a WMS type remote ows resource

98 Chapter 7. Tile stores

http://tilecache.org

deegree Webservices, Release 3.3.10

• The identifier for the tile data sets is mandatory

• The tile matrix set id references the tile matrix set

• The output format is relevant if you use this tile data set in a WMTS

• The request params section specifies parameters to be used in the GetMap requests sent to the WMS:

• The layers parameter can be used to specify one or more (comma separated) layers to request

• The styles parameter must correspond to the layers parameter (works the same like GetMap)

• The format parameter specifies the image format to request from the WMS

• The CRS parameter specifies which CRS to use when requesting

Additionally you can specify default and override values for request parameters within the request params block.
Just add Parameter tags as described in the Request options layer chapter. The replacing/defaulting currently
only works when you configure a WMTS on top of this tile store. GetTile parameters are then mapped to
GetMap requests to the backend, and GetFeatureInfo WMTS parameters to GetFeatureInfo WMS
parameters on the backend.

7.5 Remote WMTS tile store

The remote WMTS tile store can be used to generate tiles on-the-fly from a WMTS service. This tile store is
read-only.

While you can configure multiple tile data sets in one remote WMTS tile store configuration, they will all be based
on one WMTS.

Let’s have a look at an example:

<RemoteWMTSTileStore xmlns="http://www.deegree.org/datasource/tile/remotewmts" configVersion="3.2.0">

<RemoteWMTSId>wmts1</RemoteWMTSId>

<TileDataSet>
<Identifier>satellite</Identifier>
<OutputFormat>image/png</OutputFormat>
<TileMatrixSetId>EPSG:4326</TileMatrixSetId>
<RequestParams>

<Layer>SatelliteProvo</Layer>
<Style>default</Style>
<Format>image/png</Format>
<TileMatrixSet>EPSG:4326</TileMatrixSet>

</RequestParams>
</TileDataSet>

</RemoteWMTSTileStore>

• The remote WMTS id is mandatory, and must point to a WMTS type remote OWS resource

• The identifier for the tile data sets is optional, defaults to the value of the Layer request parameter

• The output format is relevant if you want to use this tile data set in a WMTS, defaults to the value of the
Format request parameter

• The tile matrix set id references the local tile matrix set you want to use, defaults to the value of the
TileMatrixSet request parameter

• The request params section specifies parameters to be used in the GetTile requests sent to the WMTS:

• The layer parameter specifies the layer name to request

• The style parameter specifies the style name to request

• The format parameter specifies the image format to request

7.5. Remote WMTS tile store 99

deegree Webservices, Release 3.3.10

• The tile matrix set parameter specifies the tile matrix set to request

Please note that you need a locally configured tile matrix set that corresponds exactly to the tile matrix set of the
remote WMTS. They need not have the same identifier(s) (just configure the TileMatrixSetId option if they differ),
but the structure (coordinate system, tile size, number of tiles per matrix etc.) needs to be identical.

Additionally you can specify default and override values for request parameters within the request params block.
Just add Parameter tags as described in the Request options layer chapter. The replacing/defaulting currently
only works when you configure a WMTS on top of this tile store. Please note that the scope attribute allows
GetTile and GetFeatureInfo, as GetMap is not supported by WMTS services.

100 Chapter 7. Tile stores

CHAPTER

EIGHT

COVERAGE STORES

Coverage stores are resources that provide access to raster data. The most common use case for coverage stores
is to provide data for coverage layers. You can access this configuration level by clicking the coverage stores
link in the service console. The corresponding resource configuration files are located in subdirectory data-
sources/coverage/ of the active deegree workspace directory.

Figure 8.1: Coverage store resources provide access to raster data

For raster data there are three different possible configurations. One is for <Raster> and one is for <MultiResolu-
tionRaster>. The third possibility is for <Pyramid>. If you are not sure which one to use, you probably want the
<Raster> configuration.

8.1 Raster

The most common method to provide coverages with deegree, is to use Raster. With the Raster configuration it is
possible to provide single RasterFiles or a complete RasterDirectory directly.

Here are two examples showing RasterFile and RasterDirectory configuration:

<Raster xmlns="http://www.deegree.org/datasource/coverage/raster" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.deegree.org/datasource/coverage/raster http://schemas.deegree.org/datasource/coverage/raster/3.0.0/raster.xsd" configVersion="3.0.0" originLocation="outer">
<StorageCRS>EPSG:26912</StorageCRS>
<RasterFile>../../../data/utah/raster/dem.tiff</RasterFile>

</Raster>

<Raster xmlns="http://www.deegree.org/datasource/coverage/raster" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.deegree.org/datasource/coverage/raster http://schemas.deegree.org/datasource/coverage/raster/3.0.0/raster.xsd" configVersion="3.0.0" originLocation="outer">
<StorageCRS>EPSG:26912</StorageCRS>

101

deegree Webservices, Release 3.3.10

<RasterDirectory>../../../data/utah/raster/Satellite_Provo/</RasterDirectory>
</Raster>

A Raster can have several attributes:

• The originLocation attribute can have the values center or outer to declare the pixel origin of the coverage.

• The nodata attribute can be optionally used to declare a nodata value.

• The readWorldFiles parameter can have the values true or false to indicate if worlfiles will be read. Default
value is true.

• The StorageCRS paramter is optional but recommended. It contains the EPSG code of the coverage sources.

• The RasterFile and RasterDirectory parameters contain the path to your coverage sources. The Raster-
Directory paramter can additionally have the recursive attribute with true and false as value to declare
subdirectories to be included.

8.2 MultiResolutionRaster

A <MultiResolutionRaster> wraps single raster elements and adds a resolution for each raster. This means, de-
pending on the resolution of the map a different raster source is used.

Here is an example for a MultiResolutionRaster:

<MultiResolutionRaster xmlns="http://www.deegree.org/datasource/coverage/raster" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.deegree.org/datasource/coverage/raster http://schemas.deegree.org/datasource/coverage/raster/3.0.0/raster.xsd" configVersion="3.0.0" originLocation="outer">
<StorageCRS>EPSG:26912</StorageCRS>
<Resolution>
<Raster configVersion="3.0.0" originLocation="outer" res="1.0">

<StorageCRS>EPSG:26912</StorageCRS>
<RasterFile>../../../data/utah/raster/dem.tiff</RasterFile>

</Raster>
</Resolution>
<Resolution>
<Raster configVersion="3.0.0" res="2.0">
<StorageCRS>EPSG:26912</StorageCRS>
<RasterDirectory>../../../data/utah/raster/Satellite_Provo/</RasterDirectory>

</Raster>
</Resolution>

</MultiResolutionRaster>

• A MultiResolustionRaster contains at least one Resolution

• The Raster parameter has a res attribute. Its value is related to the provided resolution.

• The StorageCRS paramter is optional but recommended. It contains the EPSG code of the coverage sources.

• All elements and attributes from the Raster configuration can be used for the resolutions.

8.3 Pyramid

A <Pyramid> is used for deegree’s support for raster pyramids. For this, it is required that the raster pyramid must
be a GeoTIFF, containing the extent and coordinate system of the data. Overlays must be multiples of 2. This is
best tested with source data being processed with GDAL.

8.3.1 Prerequisities for Pyramids

• Must be a GeoTiff as BigTiff

• Must be RGB or RGBA

102 Chapter 8. Coverage stores

deegree Webservices, Release 3.3.10

• CRS must be contained

• Must be tiled

• Should have overviews where each overview must consist of 1/2 resolution

The following example shows, how to configure a coverage pyramid:

<Pyramid xmlns="http://www.deegree.org/datasource/coverage/pyramid" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.deegree.org/datasource/coverage/pyramid http://schemas.deegree.org/datasource/coverage/raster/3.1.0/pyramid.xsd" configVersion="3.1.0">
<PyramidFile>data/example.tif</PyramidFile>
<CRS>EPSG:4326</CRS>

</Pyramid>

• A Pyramid contains a PyramidFile parameter with the path to the pyramid as its value.

• A Pyramid contains a CRS parameter describing the source CRS of the pyramid as EPSG code.

8.3. Pyramid 103

deegree Webservices, Release 3.3.10

104 Chapter 8. Coverage stores

CHAPTER

NINE

METADATA STORES

Metadata stores are data stores that provide access to metadata records. The two common use cases for metadata
stores are:

• Accessing via CSW

• Providing of metadata for web service resources (TBD)

The remainder of this chapter describes some relevant terms and the metadata store configuration files in detail.
You can access this configuration level by clicking on the metadata stores link in the administration console. The
configuration files are located in the datasources/metadata/ directory of the deegree workspace.

Figure 9.1: Metadata store resources provide access to metadata records

9.1 Memory ISO Metadata store

The memory ISO metadata store implementation is transactional and works file based.

The memory metadata store configuration is defined by schema file
http://schemas.deegree.org/datasource/metadata/iso19139/3.2.0/memory.xsd

105

http://schemas.deegree.org/datasource/metadata/iso19139/3.2.0/memory.xsd

deegree Webservices, Release 3.3.10

Memory ISO Metadatastore config (skeleton)

<ISOMemoryMetadataStore
xmlns="http://www.deegree.org/datasource/metadata/iso19139/memory"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/metadata/iso19139/memory
memory.xsd"
configVersion="3.2.0">
<!-- [1...n] directory to be used -->
<ISORecordDirectory>..</ISORecordDirectory>
<!-- [0...1] directory to be used to insert records -->
<InsertDirectory>..</InsertDirectory>

</ISOMemoryMetadataStore>

The root element has to be ISOMemoryMetadataStore and the config attribute must be 3.2.0. The only
mandatory element is:

• ISORecordDirectory: A list of directories containing records loaded in the store during start of the
store.

To allow insert transactions one optional element must be declared:

• InsertDirectory: Directory to store inserted records, can be one of the directories declared in the
element ISORecordDirectory.

9.2 SQL ISO Metadata store

The SQL ISO metadata store implementation currently supports the following backends:

• PostgreSQL (8.3, 8.4, 9.0, 9.1, 9.2) with PostGIS extension (1.4, 1.5, 2.0)

• Oracle Spatial (10g, 11g)

• Microsoft SQL Server (2008, 2012)

Tip: If you want to use the SQL ISO metadata store with Oracle or Microsoft SQL Server, you will need to add
additional modules first. This is described in Adding database modules.

The SQL metadata store configuration is defined by schema file http://schemas.deegree.org/datasource/metadata/iso19115/3.2.0/iso19115.xsd

106 Chapter 9. Metadata stores

http://schemas.deegree.org/datasource/metadata/iso19115/3.2.0/iso19115.xsd

deegree Webservices, Release 3.3.10

SQL ISO Metadatastore config (skeleton)

<?xml version="1.0" encoding="UTF-8"?>
<ISOMetadataStore
configVersion="3.0.0"
xmlns="http://www.deegree.org/datasource/metadata/iso19115"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/datasource/metadata/iso19115
http://schemas.deegree.org/datasource/metadata/iso19115/3.0.0/iso19115.xsd">

<!-- [1] Identifier of JDBC connection -->
<JDBCConnId>conn1</JDBCConnId>

<!-- [0..1] Definition of the Inspectors for checking the metadata for insert
or update transaction -->

<Inspectors>

<!-- [0..1] Checks the fileIdentifier -->
<FileIdentifierInspector rejectEmpty="true"/>

</Inspectors>

<!-- [0..1] Specifies the content of the queryable property ’anyText’ -->
<AnyText>

<!-- [0..1] Set of XPath-expression (remove line breaks in xpaths!) -->
<Custom>

<XPath>/gmd:MD_Metadata/gmd:identificationInfo/
gmd:MD_DataIdentification/gmd:descriptiveKeywords/gmd:MD_Keywords/
gmd:keyword/gco:CharacterString</XPath>

<XPath>/gmd:MD_Metadata/gmd:contact/gmd:CI_ResponsibleParty/
gmd:individualName/gco:CharacterString</XPath>

</Custom>

</AnyText>

</ISOMetadataStore>

The root element has to be ISOMetadataStore and the config attribute must be 3.2.0. The only mandatory
element is:

• JDBCConnId: Id of the JDBC connection to use (see ...)

The optional elements are:

• Inspectors: List of inspectors inspecting a metadataset before inserting. Known inspectors are:

– FileIdentifierInspector

– InspireInspector

– CoupledResourceInspector

– SchemaValidator

– NamespaceNormalizer

• AnyText: Configuration of the values searchable by the queryable property AnyText, possible values
are:

– All: all values

– Core: the core queryable properties (default)

– Custom: a custom set of properties defined as xpath expressions

9.2. SQL ISO Metadata store 107

deegree Webservices, Release 3.3.10

• QueryableProperties: Configuration of additional query properties. Detailed informations can be
found in the following example:

...

<QueryableProperties>
<!-- can contain multiple elements ’QueryableProperty’ -->
<!-- set attribute isMultiple="true" if the xpath links

to a property which can occur multiple times-->
<QueryableProperty isMultiple="true">
<!-- configures the xpath to the element which shoud be queryable

(remove line breaks in xpaths!)-->
<xpath>//gmd:MD_Metadata/gmd:identificationInfo/

gmd:MD_DataIdentification/gmd:spatialRepresentationType/
gmd:MD_SpatialRepresentationTypeCode/@codeListValue</xpath>

<!-- namespace and name to use in a filter expression, e.g
<ogc:PropertyName xmlns:apiso="http://www.opengis.net/cat/csw/apiso/1.0">

apiso:SpatialRepresentationType</ogc:PropertyName> -->
<name namespace="http://www.opengis.net/cat/csw/apiso/1.0">

SpatialRepresentationType</name>
<!-- Name of the column in the table idxt_main where the valus of a record

should be stored, must be added manually -->
<column>spatialRepType</column>

</QueryableProperty>
</QueryableProperties>

...

Hint: If a new queryable property is added or the AnyText value changed the inserted metadata records are not
adjusted to this changes! This means for the example above that an existing record with SpatialRepresentationType
‘raster’ is not found by searching for all records with this type until the record is inserted or updated again!

9.3 SQL EBRIM/EO Metadata store

TBD

108 Chapter 9. Metadata stores

CHAPTER

TEN

MAP LAYERS

A (map) layer defines how to combine a data store and a style resource into a map. Each layer resource can be used
to define one or more layers. The layers can be used in theme definitions, and depend on various data source and
style resources. This chapter assumes you’ve already configured a data source and a style for your layer (although
a style is not strictly needed; some layer types can do without, and others can render in a default style when none
is given).

Figure 10.1: Layer resources define how data store and style resources are combined

10.1 Common configuration

Most layer configurations follow a similar structure. That’s why some of the common components are exactly
the same across configurations (they’re even in common namespaces). In this section these common elements are
described first, the subsequent chapters describe the different layer types.

10.1.1 Description metadata

The description section is used to describe textual metadata which occurs in almost all objects. This includes
elements such as title, abstract and so on. The format which is being described here is capable of multilingualism,
but processing multilingual strings is not supported yet (you can still define it, though).

The commonly used prefix for these elements is d. Let’s have a look at an example:

109

deegree Webservices, Release 3.3.10

<d:Title>My Roads Layer</d:Title>
<d:Abstract>This is my roads layer, which I configured myself. I had no help but the deegree webservices handbook.</d:Abstract>
<d:Keywords>

<d:Keyword>deegree</d:Keyword>
<d:Keyword>transportation</d:Keyword>
<d:Type codeSpace=’none’>unknown</d:Type>

</d:Keywords>

All elements support the lang attribute to specify the language, and all elements may occur multiple times
(including the Keywords element).

10.1.2 Spatial metadata

The spatial metadata is used to describe coordinate systems and envelopes. Typically, the layers can retrieve the
native coordinate system and envelope from the data source, but sometimes it may be desirable to define a special
extent, or add more coordinate systems. In the example configurations, the prefix s is used for spatial metadata
elements, so it is used here as well:

<s:Envelope crs=’EPSG:25832’>
<s:LowerCorner>204485 5204122</s:LowerCorner>
<s:UpperCorner>1008600 6134557</s:UpperCorner>

</s:Envelope>
<s:CRS>EPSG:25832 EPSG:31466 EPSG:4326</s:CRS>

As you can see, the envelope is specified in a specific CRS. If the attribute is omitted, EPSG:4326 is assumed. The
CRS element may include multiple codes, separated by whitespace.

10.1.3 Common layer options

This sections describes a set of common layer options. Not all options make sense for all layers, but most of them
do.

The namespace for the elements (newly) defined in this section is commonly bound to the l character. Let’s have
a look at the options available:

Option Cardinality Value Description
Name 1 String The unique identifier of the layer
Description 0..1 Several The description elements described above
Spatial metadata 0..1 Several The spatial metadata elements described above
MetadataSetId 0..1 String A metadata set id by which this layer is identified
ScaleDenominators 0..1 Empty Used to define scale constraints on the layer
Dimension 0..n Complex Used to configure extra dimensions for the layer
StyleRef 0..n Complex Used to reference one or more styles
LayerOptions 0..1 Complex Used to configure rendering behaviour

The MetadataSetId is used in the WMS to export a MetadataURL based on a template. Please refer to the
WMS configuration for details on how to configure this.

The ScaleDenominators element has min and max attributes which define the constraints in WMS 1.3.0
scale denominators (based on 0.28mm pixel size).

Layer dimensions

The WMS specification supports extra dimensions (besides the spatial extent) for layers, such as elevation, time
or other custom dimensions. Since the support must be present at the layer level, this must be configured on the
layer in deegree. The Dimension element can have the attributes isTime and isElevation to indicate that
you’re defining the standard time/elevation dimension. If none is given, you’ll have to specify the Name element.
Let’s see what you can configure here:

110 Chapter 10. Map layers

deegree Webservices, Release 3.3.10

Option Cardinality Value Description
Name 0..1 String The dimension name, if not elevation or time
Source 1 String/QName The data source of the dimension
DefaultValue 0..1 String Specify a default value to be used, default is none
MultipleValues 0..1 Boolean Whether multiple values are supported, default is false
NearestValue 0..1 Boolean Whether jumping to the nearest value is supported, default is false
Current 0..1 Boolean Whether current is supported for time, default is false
Units 0..1 String What units this dimension uses. Mandatory for non time/elevation
UnitSymbol 0..1 String What unit symbol to use. Mandatory for non time/elevation
Extent 1 String The extent of the dimension

Please note that for feature layers, the Source element content must be a qualified property name.

To understand how the omission or specification of the various optional elements here affect the WMS protocol
behaviour, it is recommended to read up on the WMS 1.3.0 specification. The deegree WMS is going to behave
according to what the spec says it must do (what to do in case a default value is available or not etc.). The format
for the values and the extent is also identical to that used for requests/in the spec.

Layer styles

You can configure any number of StyleRef elements. Each corresponds to exactly one style store configuration,
specified by the subelement StyleStoreId. The only other allowed subelement is the Style element, which
can be used to extract/rename specific styles from the style store. If omitted, all styles matching the layers’ name
are used. Let’s have a look at an example snippet:

<l:StyleRef>
<l:StyleStoreId>roads_style</l:StyleStoreId>

</l:StyleRef>

Here’s a snippet with Style elements:

<l:StyleRef>
<l:StyleStoreId>road_styles</l:StyleStoreId>
<l:Style>
...
</l:Style>
<l:Style>
...
</l:Style>

</l:StyleRef>

If a Style element is specified, you must first specify what style you want extracted:

<l:Style>
<l:StyleName>highways</l:StyleName>
<l:LayerNameRef>highways</l:LayerNameRef>
<l:StyleNameRef>highways</l:StyleNameRef>
...

</l:Style>

The StyleName specifies the name under which the style will be known in the WMS. The LayerNameRef
and StyleNameRef are used to extract the style from the style store.

The next part to configure within the Style element is the legend generation, if you don’t want to use the default
legend generated from the rendering style. You can either specify a different style from the style store to use for
legend generation, or you can specify an external graphic. Referencing a different legend style is straightforward:

<l:Style>
...

<l:LegendStyle>
<l:LayerNameRef>highways</l:LayerNameRef>
<l:StyleNameRef>highways_legend</l:StyleNameRef>

10.1. Common configuration 111

deegree Webservices, Release 3.3.10

</l:LegendStyle>
</l:Style>

With specifying the external graphic, you have the option of referencing a local file, or referencing a remote URL.
Specifying a file is straightforward, and will result in the contents of that file being used as legend:

<l:Style>
...

<l:LegendGraphic>legendimages/mylegend.png</l:LegendGraphic>
</l:Style>

If you specify an HTTP URL instead of a relative path the behaviour is the same by default, the remote im-
ages’ content is used as legend. If you set the optional attribute outputGetLegendGraphicUrl to false
(it’s true by default), the specified URL is written as LegendURL in the WMS capabilities (the behaviour for
GetLegendGraphic requests is the same anyway):

<l:Style>
...

<l:LegendGraphic outputGetLegendGraphicUrl="false">http://legends.acme.com/menu.png</l:LegendGraphic>
</l:Style>

Rendering options

The rendering options are basically the same as the WMS layer options. Here’s a copy of the corresponding table
for reference:

Option Cardi-
nality

String Description

AntiAlias-
ing

0..1 String Whether to antialias NONE, TEXT, IMAGE or BOTH, default is BOTH

Render-
ingQuality

0..1 String Whether to render LOW, NORMAL or HIGH quality, default is HIGH

Interpola-
tion

0..1 String Whether to use BILINEAR, NEAREST_NEIGHBOUR or BICUBIC
interpolation, default is NEAREST_NEIGHBOUR

MaxFea-
tures

0..1 Inte-
ger

Maximum number of features to render at once, default is 10000

Feature-
Info

0..1 None attribute enabled: if false, feature info is disabled (default is true)

Feature-
Info

0..1 None attribute pixelRadius: Number of pixels to consider when doing
GetFeatureInfo, default is 1

Here is an example snippet:

<l:LayerOptions>
<l:AntiAliasing>TEXT</l:AntiAliasing>

</l:LayerOptions>

10.2 Feature layers

Feature layers are layers based on a feature store. You can have multiple layers defined in a feature layers config-
uration, each based on feature types from the same feature store.

You have two choices to configure feature layers. One option is to try to have deegree figure out what layers
to configure by itself, the other is to manually define all the layers you want. Having deegree do the configura-
tion automatically has the obvious advantage that the configuration is minimal, with the disadvantage of lacking
flexibility.

112 Chapter 10. Map layers

deegree Webservices, Release 3.3.10

10.2.1 Auto layers

This configuration only involves to specify what feature store to use, and optionally, what styles. Let’s have a look
at an example:

<FeatureLayers xmlns=’http://www.deegree.org/layers/feature’
xmlns:d=’http://www.deegree.org/metadata/description’
xmlns:s=’http://www.deegree.org/metadata/spatial’
xmlns:l=’http://www.deegree.org/layers/base’
configVersion=’3.2.0’>

<AutoLayers>
<FeatureStoreId>myfeaturestore</FeatureStoreId>
<StyleStoreId>style1</StyleStoreId>
<StyleStoreId>style2</StyleStoreId>

</AutoLayers>

</FeatureLayers>

This will create one layer for each (concrete) feature type in the feature store. If no style stores are configured, the
default style will be used for all layers. If style stores are configured, matching styles will be automatically used
if available. So if you have a feature type with (local) name Autos, deegree will check all configured style stores
for styles identified by layer name Autos and use them, if available. The name Autos will be used as name and
title as appropriate, and spatial metadata will be used as available from the feature store.

10.2.2 Manual configuration

The basic structure of a manual configuration looks like this:

<FeatureLayers xmlns=’http://www.deegree.org/layers/feature’
xmlns:d=’http://www.deegree.org/metadata/description’
xmlns:s=’http://www.deegree.org/metadata/spatial’
xmlns:l=’http://www.deegree.org/layers/base’
configVersion=’3.2.0’>

<FeatureStoreId>myfeaturestore</FeatureStoreId>
<FeatureLayer>
...
</FeatureLayer>
<FeatureLayer>
...
</FeatureLayer>

</FeatureLayers>

As you can see, the first thing to do is to bind the configuration to a feature store. After that, you can define one or
more feature layers.

A feature layer configuration has three optional elements besides the common elements. The FeatureType can
be used to restrict a layer to a specific feature type (use a qualified name). The Filter element can be used to
specify a filter that applies to the layer globally (use standard OGC filter encoding 1.1.0 ogc:Filter element
within):

<FeatureLayer>
<FeatureType xmlns:app=’http://www.deegree.org/app’>app:Roads</FeatureType>
<Filter>
<Filter xmlns=’http://www.opengis.net/ogc’>

<PropertyIsEqualTo>
<PropertyName xmlns:app=’http://www.deegree.org/app’>app:type</PropertyName>
<Literal>123</Literal>

</PropertyIsEqualTo>
</Filter>

</Filter>

10.2. Feature layers 113

deegree Webservices, Release 3.3.10

...
</FeatureLayer>

The third extra option is the SortBy element, which can be used to influence the order in which features are
drawn:

<FeatureLayer>
...
<SortBy reverseFeatureInfo="false">
<SortBy xmlns="http://www.opengis.net/ogc">

<SortProperty>
<PropertyName xmlns:app="http://www.deegree.org/app">app:level</PropertyName>

</SortProperty>
</SortBy>

</SortBy>
...

</FeatureLayer>

The attribute reverseFeatureInfo is false by default. If set to true, the feature that is drawn first will appear
last in a GetFeatureInfo feature collection.

After that the standard options follow, as outlined in the common section.

10.3 Tile layers

Tile layers are based on tile data sets. You can configure an unlimited number of tile layers each based on several
different tile data sets within one configuration file.

As you might have guessed, most of the common parameters are ignored for this layer type. Most notably, the
style and dimension configuration is ignored.

In most cases, a configuration like the following is sufficient:

<TileLayers xmlns="http://www.deegree.org/layers/tile"
xmlns:d="http://www.deegree.org/metadata/description"
xmlns:l="http://www.deegree.org/layers/base"
configVersion="3.2.0">

<TileLayer>
<l:Name>example</l:Name>
<d:Title>Example INSPIRE layer</d:Title>
<TileDataSet tileStoreId="sometilestore">roads</TileDataSet>
<TileDataSet tileStoreId="sometilestore4326">roads</TileDataSet>

</TileLayer>
</TileLayers>

Just repeat the TileLayer element once for each layer you wish to configure.

Please note that each tile data set needs to be configured with a unique tile matrix set within one layer. It is
currently not possible (let’s say it’s not advisable) to configure two tile data sets based on the same tile matrix set
within one layer, even if their actual data does not overlap.

If used in a WMTS, the WMTS capabilities will contain only the actually used tile matrix sets, and will contain
appropriate links in the layers which have been configured with fitting tile data sets.

10.4 Coverage layers

Coverage layers are based on coverages out of coverage stores. Similar to feature layers, you can choose between
an automatic layer setup and a manual configuration.

114 Chapter 10. Map layers

deegree Webservices, Release 3.3.10

10.4.1 Auto layers

All you need to configure is the coverage store and an optional style store:

<CoverageLayers xmlns="http://www.deegree.org/layers/coverage"
xmlns:d="http://www.deegree.org/metadata/description"
xmlns:l="http://www.deegree.org/layers/base"
configVersion="3.2.0">

<AutoLayers>
<CoverageStoreId>dem</CoverageStoreId>
<StyleStoreId>heightmap</StyleStoreId>

</AutoLayers>
</CoverageLayers>

In theory this would add one layer for each coverage in the coverage store, but since only one coverage is supported
per coverage store at the moment, only one layer will be the result. If a style store is specified, all styles matching
the layer name (the coverage store id) will be available for the layer.

10.4.2 Manual configuration

The manual configuration requires the definition of a coverage store, and one or many coverage layer definitions:

<CoverageLayers xmlns="http://www.deegree.org/layers/coverage"
xmlns:d="http://www.deegree.org/metadata/description"
xmlns:l="http://www.deegree.org/layers/base"
configVersion="3.2.0">

<CoverageStoreId>dem</CoverageStoreId>
<CoverageLayer>
<!-- standard layer options -->
</CoverageLayer>

</CoverageLayers>

Within the CoverageLayer element you can only define the common layer options. While only one coverage
is supported per coverage store, it might still be desirable to define multiple layers based on the store, for example
one layer per style.

10.5 Remote WMS layers

Remote WMS layers are based on layers requested from another WMS on the network. In its simplest mode, the
remote WMS layer store will provide all layers that the other WMS offers, but you can pick out and restrict the
configuration to single layers if you want. The common style and dimension options are not used in this layer
configuration.

The remote WMS layer configuration is always based on a single RemoteWMS resource, so the most basic con-
figuration which cascades all available layers looks like this:

<RemoteWMSLayers xmlns="http://www.deegree.org/layers/remotewms" configVersion="3.2.0">
<RemoteWMSId>d3</RemoteWMSId>
<!-- more detailed options would follow here -->

</RemoteWMSLayers>

In many cases that’s already sufficient, but if you wish to control the way the requests are being sent, you can
specify the RequestOptions. If you want to limit/restrict the layers, you can specify any amount of Layer
elements.

10.5.1 Request options

Use the ImageFormat element to indicate which format should be requested from the remote WMS. Set the
attribute transparent to false if you don’t want to request transparent images. Default is to request trans-

10.5. Remote WMS layers 115

deegree Webservices, Release 3.3.10

parent image/png maps:

<RequestOptions>
<ImageFormat transparent=’false’>image/gif</ImageFormat>

</RequestOptions>

The DefaultCRS element can be used to specify the CRS to request. If the useAlways attribute is true, maps
are always requested in this format, and transformed if necessary. If set to false (the default), the requested CRS
will be requested from the remote service if available. If a requested CRS is not available from the remote service,
the value of this option is used, and the resulting image transformed.

The Parameter element can be used (multiple times) to add and/or fix KVP parameter values used in requests
to the remote service. The name attribute (which is required) configures which parameter you’re talking about,
and the content specifies a default or fixed value. The use and scope attributes can be used to specify how to
handle parameters. Have a look at the following table for default and possible values of these attributes:

Name Default Possible values
use allowOverride allowOverride, fixed
scope All GetMap, GetFeatureInfo, All

Let’s have a look at a couple of examples:

<RequestOptions>
<Parameter name=’BGCOLOR’>#00ff00</Parameter>

<RequestOptions>

This means that all maps are requested with a background color of green, unless the request overrides it. GetFea-
tureInfo requests will also have the BGCOLOR parameter set, although it makes no difference there.

Another example:

<RequestOptions>
<Parameter name=’USERNAME’>SEC_ADMIN</Parameter>
<Parameter name=’PASSWORD’>JOSE67</Parameter>

</RequestOptions>

In this case all requests will have USERNAME and PASSWORD set to these values. Users can still override these
values in requests.

A last example:

<RequestOptions>
<Parameter scope=’GetMap’ name=’BGCOLOR’>#00ff00</Parameter>
<Parameter use=’fixed’ name=’USERNAME’>SEC_ADMIN</Parameter>
<Parameter use=’fixed’ name=’PASSWORD’>JOSE67</Parameter>

</RequestOptions>

Now all GetMap requests will have the USERNAME and PASSWORD parameters hard coded to the configured
values, with the BGCOLOR parameter set to green by default, but with the possibility of override by the user.
GetFeatureInfo requests will only have the USERNAME and PASSWORD parameters fixed to the configured
values.

10.5.2 Layer configuration

The manual configuration allows you to pick out a layer, rename it, and optionally override the _common descrip-
tion and spatial metadata. What you don’t override, will be copied from the source. Let’s look at an example:

<RemoteWMSLayers>
...
<Layer>
<OriginalName>cite:BasicPolygons</OriginalName>
<Name>basic_polygons</Name>
<!-- optionally override description (title, abstract, keywords) -->
<!-- optionally override envelope, crs -->

116 Chapter 10. Map layers

deegree Webservices, Release 3.3.10

<!-- optionally set layer options -->
</Layer>

</RemoteWMSLayers>

Please note that once you specify one layer, you’ll need to specify each layer you want to make available. If
you want all layers to be available, don’t specify a Layer element. Of course, you can specify as many Layer
elements as you like.

10.5. Remote WMS layers 117

deegree Webservices, Release 3.3.10

118 Chapter 10. Map layers

CHAPTER

ELEVEN

MAP THEMES

A theme defines a tree like hierarchy, which at each node can contain a number of layers. For people familiar with
WMS, a theme is basically a layer tree without the actual layer definition.

In deegree it is used to define a structure with layers to be used in service configurations, notably WMS and
WMTS. The concept originated from the WMTS 1.0.0 specification, with a strong hunch that it might be used in
subsequent WMS specifications as well (namely WMS 2.0.0).

To configure a theme, you should already have a couple of layers configured. Right now there are two types of
theme configurations available. The most commonly used is the ‘standard’ theme configuration, where you man-
ually configure the structure. Another is a configuration which extracts a theme from a remote WMS resource’s
layer tree.

A theme always has exactly one root node (theme). A theme can contain zero or more sub-themes, and zero or
more layers.

Figure 11.1: Theme resources group layers into trees

11.1 Standard themes

The standard theme configuration is used to manually configure themes. One configuration can contain one or
more themes. A theme configuration makes use of the common Description metadata and Spatial metadata
elements described in the layer chapter. If the metadata is not specified, it will be copied from layers within the
same node.

In order to reference layers, the theme configuration needs to know layer stores. That’s why the first thing you
need to specify are the layer stores you intend to use:

119

deegree Webservices, Release 3.3.10

<Themes configVersion="3.2.0" xmlns="http://www.deegree.org/themes/standard"
xmlns:d="http://www.deegree.org/metadata/description"
xmlns:s="http://www.deegree.org/metadata/spatial">

<LayerStoreId>layerstore</LayerStoreId>
<LayerStoreId>layerstore2</LayerStoreId>
<Theme>
...
</Theme>
...

</Themes>

Let’s have a look at the actual theme configuration. First, you have the choice to give the theme an identifier or
not. Then you can specify the description and spatial metadata (only the Title element is mandatory here). If it
does not have an identifier, it will not be requestable in the service configuration:

<Theme>
<Identifier>roads</Identifier>
<!-- common description elements here -->
<!-- common spatial metadata elements here -->
...

</Theme>

After that, you can add layers and subthemes as required to the theme:

<Theme>
...
<Layer>roads</Layer>
<Layer layerStore=’layerstore2’>highways</Layer>
<Theme>
...
<Theme>

...
</Theme>

</Theme>
</Theme>

As you can see, you can optionally specify which layer store a given layer comes from. This can be useful if you
have multiple layer stores offering a layer with the same name.

Since the names of the layers are not used when using WMS, this mechanism can be used to combine multiple
layers (configuration wise) into one (WMS wise, in deegree terms it would be one theme with multiple layers).

11.2 Remote WMS themes

The remote WMS theme configuration can be used to extract a theme from a remote WMS resource’s layer tree.
This is most commonly used when trying to cascade a whole WMS.

The configuration is very simple, you only need to specify the remote WMS resource you want to use, and the
layer store from which layers should be extracted:

<RemoteWMSThemes xmlns="http://www.deegree.org/themes/remotewms" configVersion="3.1.0">
<RemoteWMSId>d3</RemoteWMSId>
<LayerStoreId>d3</LayerStoreId>

</RemoteWMSThemes>

deegree will automatically add layers to the theme, if a corresponding layer exists in the layer store. In case the
layer store is also configured based on the remote WMS used here, there will be a corresponding layer for each
requestable layer from the remote WMS.

Using this kind of configuration, you can duplicate a complete WMS using 15 lines of configuration (3 for the
remote WMS, 3 for the remote WMS layer store, 4 for the theme and 5 for the WMS).

120 Chapter 11. Map themes

CHAPTER

TWELVE

MAP STYLES

Style resources are used to obtain information on how to render geo objects (mostly features, but also coverages)
into maps. The most common use case is to reference them from a layer configuration, in order to describe how
the layer is to be rendered. This chapter assumes the reader is familiar with basic SLD/SE terms. The style
configurations do not depend on any other resource.

In contrast to other deegree configurations the style configurations do not have a custom format. You can use
standard SLD or SE documents (1.0.0 and 1.1.0 are supported), with a couple of deegree specific extensions,
which are described below. Please refer to the StylesConfiguration wiki page for examples, and to the SLD and
SE specifications for reference.

In deegree terms, each SLD or SE file will create a style store. In case of an SE file (usually beginning at the
FeatureTypeStyle or CoverageStyle level) the style store only contains one style, in case of an SLD file the style
store may contain multiple styles, each identified by the layer (only NamedLayers make sense here) and the name
of the style (only UserStyles make sense) when referenced later.

Figure 12.1: Style resources define how geo objects are rendered

Tip: When defining styles, take note of the log file. Upon startup the log will warn you about potential problems
or errors during parsing, and upon rendering warnings will be emitted when rendering is unsuccessful eg. because
you had a typo in a geometry property name. When you’re seeing an empty map when expecting a fancy one,
check the log before reporting a bug. deegree will tolerate a lot of syntactical errors in your style files, but you’re
more likely to get a good result when your files validate and you have no warnings in the log.

121

http://wiki.deegree.org/deegreeWiki/deegree3/WorkspaceConfiguration/StylesConfiguration
http://www.opengeospatial.org/standards/sld
http://www.opengeospatial.org/standards/se

deegree Webservices, Release 3.3.10

12.1 SLD/SE clarifications

This chapter is meant to clarify deegree’s behaviour when using standard SLD/SE constructs.

12.1.1 Perpendicular offset/polygon orientation

For polygon rendering, the orientation is always fixed, and will be corrected if a feature store yields inconsistent
geometries. The outer ring is always oriented counter clockwise, inner rings are oriented clockwise.

A positive perpendicular offset setting results in an offset movement in the outer direction, a negative setting
moves the offset into the interior. For inner rings the effect is flipped (a positive setting moves into the interior of
the inner ring, a negative setting moves into the exterior of the inner ring).

12.2 deegree specific extensions

deegree supports some extensions of SLD/SE and filter encoding to enable more sophisticated styling. The fol-
lowing sections describe the respective extensions for SLD/SE and filter encoding.

12.2.1 SLD/SE extensions

Use of TTF files as Mark symbols

You can use TrueType font files to use custom vector symbols in a Mark element:

<Mark>
<OnlineResource xlink:href="filepath/yousans.ttf" />
<Format>ttf</Format>
<MarkIndex>99</MarkIndex>
<Fill>
<SvgParameter name="fill">#000000</SvgParameter>
...

</Fill>
<Stroke>
<SvgParameter name="stroke-opacity">0</SvgParameter>
...

</Stroke>
</Mark>

To find out what index you need to access, have a look at this post on the mailinglist which explains it very well.

LinePlacement extensions

There are additional deegree specific LinePlacement parameters available to enable more sophisticated text ren-
dering along lines:

Option Value Default Description
PreventUpsideDown Boolean false Avoids upside down placement of text
Center Boolean false Places the text in the center of the line
WordWise Boolean true Tries to place individual words instead of individual characters

12.3 Example

122 Chapter 12. Map styles

http://osgeo-org.1560.n6.nabble.com/SE-Styling-MarkIndex-glyph-index-tt5022210.html#a5026571

deegree Webservices, Release 3.3.10

<LinePlacement>
<IsRepeated>false</IsRepeated>
<InitialGap>10</InitialGap>
<PreventUpsideDown>true</PreventUpsideDown>
<Center>true</Center>
<WordWise>false</WordWise>

</LinePlacement>

12.3.1 Filter encoding extensions

There are a couple of deegree specific functions which can be expressed as standard OGC function expressions in
SLD/SE.

Most of the functions are currently described in the FilterFunctions, but new ones will be described here (the
descriptions from the wiki will be ported soon TODO TODO).

GetCurrentScale

The GetCurrentScale function takes no arguments, and dynamically provides you with the value of the current
map scale denominator (only to be used in GetMap requests!). The scale denominator will be adapted to any
custom pixel size you may be using in your request, and is the same scale denominator the WMS uses internally
for filtering out layers/style rules.

Let’s have a look at an example:
...
<sld:SvgParameter name="stroke-width">

<ogc:Function name="idiv">
<ogc:Literal>500000</ogc:Literal>
<ogc:Function name="GetCurrentScale" />

</ogc:Function>
</sld:SvgParameter>
...

In this case, the stroke width will be one pixel for scales around 500000, and will get bigger as you zoom in (and
the scale denominator gets smaller). Scale denominators above 500000 will yield invisible strokes with a width of
zero.

12.3. Example 123

http://wiki.deegree.org/deegreeWiki/deegree3/FilterFunctions

deegree Webservices, Release 3.3.10

124 Chapter 12. Map styles

CHAPTER

THIRTEEN

SERVER CONNECTIONS

Server connections are workspace resources that provide connections to remote services. These connections can
then be used by other workspace resources. Some common example use cases:

• JDBC connection: Used by SQL feature stores to access the database that stores the feature data

• JDBC connection: Used by SQL ISO metadata stores to access the database that stores the metadata records

• WMS connection: Used by remote WMS layers to access remote WMS

• WMS connection: Used by remote WMS tile stores to access remote WMS

• WMTS connection: Used by remote WMTS tile stores to access remote WMTS

There are currently two categories of server connection resources, JDBC connections (to connect to SQL
databases) and remote OWS connections (to connect to other OGC webservices).

Figure 13.1: Server connection resources define how to obtain a connection to a remote server

13.1 JDBC connections

JDBC connections define connections to SQL databases. Here’s an example that connects to a PostgreSQL
database on localhost, port 5432. The database to connect to is called ‘inspire’ , the database user is ‘postgres’
and password is ‘postgres’.

<JDBCConnection configVersion="3.0.0" xmlns="http://www.deegree.org/jdbc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/jdbc http://schemas.deegree.org/jdbc/3.0.0/jdbc.xsd">

<Url>jdbc:postgresql://localhost:5432/inspire</Url>

125

deegree Webservices, Release 3.3.10

<User>postgres</User>
<Password>postgres</Password>

</JDBCConnection>

The JDBC connection config file format is defined by schema file http://schemas.deegree.org/jdbc/3.0.0/jdbc.xsd.
The root element is JDBCConnection and the config attribute must be 3.0.0. The following table lists all
available configuration options. When specifiying them, their order must be respected.

Option Cardinality Value Description
Url 1..1 String JDBC URL (without username / password)
User 1..n String DB username
Password 1..1 String DB password

Hint: By default, deegree webservices includes JDBC drivers for connecting to PostgreSQL and Derby databases.
If you want to make a connection to other SQL databases (e.g. Oracle), you will need to add a compatible JDBC
driver manually. This is described in anchor-oraclejars.

13.2 Remote OWS connections

Remote OWS connections are typically configured with a capabilities document reference and optionally some
HTTP request parameters (such as timeouts etc.). Contrary to earlier experiments these resources only define the
actual connection to the service, not what is requested. This resource is all about how to request, not what to
request. Other resources (such as a remote WMS tile store) which make use of such a server connection typically
define what to request.

13.2.1 Remote WMS connection

The remote WMS connection can be used to connect to OGC WMS services. Versions 1.1.1 and 1.3.0 (with
limitations) are supported.

Let’s have a look at an example:

<RemoteWMS xmlns="http://www.deegree.org/remoteows/wms" configVersion="3.1.0">
<CapabilitiesDocumentLocation
location="http://deegree3-demo.deegree.org/utah-workspace/services?request=GetCapabilities&service=WMS&version=1.1.1" />

<ConnectionTimeout>10</ConnectionTimeout>
<RequestTimeout>30</RequestTimeout>
<HTTPBasicAuthentication>
<Username>hans</Username>
<Password>moleman</Password>

</HTTPBasicAuthentication>
</RemoteWMS>

• The capabilities document location is the only mandatory option. You can also use a relative path to a local
copy of the capabilities document to improve startup time.

• The connection timeout defines (in seconds) how long to wait for a connection before throwing an error.
Default is 5 seconds.

• The request timeout defines (in seconds) how long to wait for data before throwing an error. Default is 60
seconds.

• The http basic authentication options can be used to provide authentication credentials to use a HTTP basic
protected service. Default is not to authenticate.

The WMS version will be detected from the capabilities document version. When using 1.3.0, there are some
limitations (eg. GetFeatureInfo is not supported), and it is tested to a lesser extent compared with the 1.1.1
version.

126 Chapter 13. Server connections

http://schemas.deegree.org/jdbc/3.0.0/jdbc.xsd

deegree Webservices, Release 3.3.10

13.2.2 Remote WMTS connection

The remote WMTS connection can be used to connect to a OGC WMTS service. Version 1.0.0 is supported. The
configuration format is almost identical to the remote WMS configuration.

Let’s have a look at an example:

<RemoteWMTS xmlns="http://www.deegree.org/remoteows/wmts" configVersion="3.2.0">
<CapabilitiesDocumentLocation
location="http://deegree3-testing.deegree.org/utah-workspace/services?request=GetCapabilities&service=WMTS&version=1.0.0" />

<ConnectionTimeout>10</ConnectionTimeout>
<RequestTimeout>30</RequestTimeout>
<HTTPBasicAuthentication>
<Username>hans</Username>
<Password>moleman</Password>

</HTTPBasicAuthentication>
</RemoteWMTS>

• The capabilities document location is the only mandatory option. You can also use a relative path to a local
copy of the capabilities document to improve startup time.

• The connection timeout defines (in seconds) how long to wait for a connection before throwing an error.
Default is 5 seconds.

• The request timeout defines (in seconds) how long to wait for data before throwing an error. Default is 60
seconds.

• The http basic authentication options can be used to provide authentication credentials to use a HTTP basic
protected service. Default is not to authenticate.

GetTile and GetFeatureInfo operations are supported for remote WMTS resources.

13.2. Remote OWS connections 127

deegree Webservices, Release 3.3.10

128 Chapter 13. Server connections

CHAPTER

FOURTEEN

PROCESS PROVIDERS

Process provider resources define geospatial processes that can be accessed via the Web Processing Service (WPS).

The remainder of this chapter describes some relevant terms and the process provider configuration files in detail.
You can access this configuration level by clicking on the processes link in the administration console. The
corresponding resource files are located in the processes/ subdirectory of the active deegree workspace directory.

Figure 14.1: Process providers plug geospatial processes into the WPS

14.1 Java process provider

The Java process provider is a well-defined container for processes written in the Java programming language. In
order to set up a working Java process provider resource, two things are required:

• A Java process provider configuration file

• A Processlet: Java class with the actual process code

The first item is an XML resource configuration file like any other deegree resource configuration. The second
is special to this kind of resource. It provides the byte code with the process logic and has to be accessible by
deegree’s classloader. There are several options to make custom Java code available to deegree webservices (see
Java code and the classpath for details), but the most common options are:

• Putting class files into the classes/ directory of the workspace

• Putting JAR files into the modules/ directory of the workspace

129

deegree Webservices, Release 3.3.10

14.1.1 Minimal configuration example

A very minimal valid configuration example looks like this:

Java process provider: Minimal example (resource configuration)

<ProcessDefinition configVersion="3.0.0" processVersion="1.0.0" xmlns="http://www.deegree.org/processes/java"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.deegree.org/processes/java http://schemas.deegree.org/processes/java/3.0.0/java.xsd">
<Identifier>Process42</Identifier>
<JavaClass>Processlet42</JavaClass>
<Title>Calculates the answer to life, the universe and everything</Title>
<OutputParameters>

<LiteralOutput>
<Identifier>Answer</Identifier>
<Title>The universal answer</Title>

</LiteralOutput>
</OutputParameters>

</ProcessDefinition>

This example defines a bogus process with the following properties:

• Identifier: Process42

• Bound to Java code from class Processlet42

• Title Calculates the answer to life, the universe and everything (returned in WPS responses)

• No input parameters

• Single output parameter with identifier Answer and title The universal answer

In order to make this configuration work, a matching Processlet class is required:

Java process provider: Minimal example (Java code)

import org.deegree.services.wps.Processlet;
import org.deegree.services.wps.ProcessletException;
import org.deegree.services.wps.ProcessletExecutionInfo;
import org.deegree.services.wps.ProcessletInputs;
import org.deegree.services.wps.ProcessletOutputs;
import org.deegree.services.wps.output.LiteralOutput;

public class Processlet42 implements Processlet {

@Override
public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)

throws ProcessletException {
LiteralOutput output = (LiteralOutput) out.getParameter("Answer");
output.setValue("42");

}

@Override
public void init() {

// nothing to initialize
}

@Override
public void destroy() {

// nothing to destroy
}

}

130 Chapter 14. Process providers

deegree Webservices, Release 3.3.10

14.1.2 More complex configuration example

A more complex configuration example looks like this:

Java process provider: More complex example (resource configuration)

<ProcessDefinition configVersion="3.0.0" processVersion="1.0.0" storeSupported="true" statusSupported="false"
xmlns="http://www.deegree.org/processes/java" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.deegree.org/processes/java http://schemas.deegree.org/processes/java/3.0.0/java.xsd">
<Identifier>Addition</Identifier>
<JavaClass>AdditionProcesslet</JavaClass>
<Title>Process for adding two integer values.</Title>
<Abstract>The purpose of this process is to provide new users with a simple example process.</Abstract>
<InputParameters>

<LiteralInput>
<Identifier>SummandA</Identifier>
<Title>First summand </Title>
<Abstract>This parameter specifies the first summand for a simple addition.</Abstract>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<OtherUOM>centimeters</OtherUOM>

</LiteralInput>
<LiteralInput>

<Identifier>SummandB</Identifier>
<Title>Second summand </Title>
<Abstract>This parameter specifies the second summand for a simple addition.</Abstract>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<OtherUOM>centimeters</OtherUOM>

</LiteralInput>
</InputParameters>
<OutputParameters>
<LiteralOutput>

<Identifier>Sum</Identifier>
<Title>The result of the addition operation</Title>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<OtherUOM>centimeters</OtherUOM>

</LiteralOutput>
</OutputParameters>

</ProcessDefinition>

This example defines a demonstration process with the following properties:

• Identifier: AdditionProcess

• Bound to Java code from class AdditionProcesslet

• Title Process for adding two integer values. (returned in WPS responses)

• Two integer input parameters SummandA and SummandB with title, abstract and unit of measure

• Single integer output parameter with identifier Sum, title and unit of measure

In order to make this configuration work, a matching Processlet class is required:

14.1. Java process provider 131

deegree Webservices, Release 3.3.10

Java process provider: Minimal example (Java code)

import org.deegree.services.wps.Processlet;
import org.deegree.services.wps.ProcessletException;
import org.deegree.services.wps.ProcessletExecutionInfo;
import org.deegree.services.wps.ProcessletInputs;
import org.deegree.services.wps.ProcessletOutputs;
import org.deegree.services.wps.input.LiteralInput;
import org.deegree.services.wps.output.LiteralOutput;

public class AdditionProcesslet implements Processlet {

public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)
throws ProcessletException {

int summandA = Integer.parseInt(((LiteralInput) in.getParameter("SummandA")).getValue());
int summandB = Integer.parseInt(((LiteralInput) in.getParameter("SummandB")).getValue());
int sum = summandA + summandB;

LiteralOutput output = (LiteralOutput) out.getParameter("Sum");
output.setValue("" + sum);

}

public void destroy() {}

public void init() {}
}

14.1.3 Configuration options

The configuration format for the Java process provider is defined by schema file
http://schemas.deegree.org/processes/java/3.0.0/java.xsd. The following table lists all available configura-
tion options. When specifiying them, their order must be respected.

Option Cardinality Value Description
@processVersion 1 String Release version of this process (metadata)
@storeSupported 0..1 Boolean If set to true, asynchronous execution will become available
@statusSupported 0..1 Boolean If set to true, process code provides status information
Identifier 1 String Identifier of the process
JavaClass 1 String Fully qualified name of a Processlet that implements the process logic
Title 1 String Short and meaningful title (metadata)
Abstract 0..1 String Short, human readable description (metadata)
Metadata 0..n String Additional metadata
Profile 0..n String Profile to which the WPS process complies (metadata)
WSDL 0..1 String URL of a WSDL document which describes this process (metadata)
InputParameters 0..1 Complex Definition and metadata of the input parameters
OutputParameters 1 Complex Definition and metadata of the output parameters

The following sections describe these options and their sub-options in detail, as well as the Processlet API.

14.1.4 General options

All general options just provide metadata that the WPS reports to client. They don’t affect the behaviour of the
configured process.

• processVersion: The processVersion attribute has to be managed by the process developer and de-
scribes the version of the process implementation. This parameter is usually increased when changes to the
implementation of a process apply.

• Identifier: An unambiguous identifier

132 Chapter 14. Process providers

http://schemas.deegree.org/processes/java/3.0.0/java.xsd

deegree Webservices, Release 3.3.10

• Title: Short and meaningful title

• Abstract: Short, human readable description

• Metadata: Additional metadata

• Profile: Profile to which the WPS process complies

• WSDL: URL of a WSDL document which describes this process

Hint: These options directly relate to metadata defined in the WPS 1.0.0 specification.

14.1.5 The Processlet API

Option JavaClass specifies the fully qualified name of a Java class that implement deegree’s Processlet
Java interface. This interface is part of an API that hides the complexity of the WPS protocol while providing
efficient and scalable handling of input and output parameters. By using this API, the process developer can focus
on implementing the process logic without having to care of the details of the protocol:

• Request encoding (KVP, XML, SOAP)

• Input parameter passing variants (inline, by reference)

• Output parameter representation (inline, by reference)

• Storing of response documents

• Synchronous/asynchronous execution

The interface looks like this:

14.1. Java process provider 133

http://www.opengeospatial.org/standards/wps

deegree Webservices, Release 3.3.10

Java process provider: Processlet interface

package org.deegree.services.wps;

public interface Processlet {

/**
* Called by the {@link ProcessManager} to perform an execution of this {@link Processlet}.

* <p>

* The typical workflow is:

*

* Get inputs from <code>in</code> parameter

* Parse inputs into the required format (e.g. GML)

* Do computation.

* Transform computational results into required format (e.g. GML)

* Write results to <code>out</code> parameter

*

*
* @param in

* input arguments to be processed, never <code>null</code>

* @param out

* used to store the process outputs, never <code>null</code>

* @param info

* can be used to provide execution information, i.e. percentage completed and start/success messages

* that it wants to make known to clients, never <code>null</code>

* @throws ProcessletException

* may be thrown by the processlet to indicate a processing exception

*/
public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)

throws ProcessletException;

/**
* Called by the {@link ProcessManager} to indicate to a {@link Processlet} that it is being placed into service.

*/
public void init();

/**
* Called by the {@link ProcessManager} to indicate to a {@link Processlet} that it is being taken out of service.

* <p>

* This method gives the {@link Processlet} an opportunity to clean up any resources that are being held (for

* example, memory, file handles, threads) and make sure that any persistent state is synchronized with the

* {@link Processlet}’s current state in memory.

* </p>

*/
public void destroy();

}

As you can see, the interface defines three methods:

• init(): Called once when the workspace initializes the Java process provider resource that references the
class.

• destroy(): Called once when the workspace destroys the Java process provider resource that references
the class.

• process(...): Called every time an Execute request is sent to the WPS that targets this Processlet.
The method usually reads the input parameters, performs the actual computation and writes the output
parameters.

Hint: The Processlet interface mimics the well-known Java Servlet interface (hence the name). A Servlet
developer does not need to care of the details of HTTP. Similarly, a Processlet developer does not need to care of
the details of the WPS protocol.

134 Chapter 14. Process providers

deegree Webservices, Release 3.3.10

Hint: The Java process provider instantiates the Processlet class only once. However, multiple simultaneous
executions of a Processlet are possible (in case parallel Execute-requests are sent to a WPS), and therefore, the
Processlet code must be implemented in a thread-safe manner (just like Servlets).

Processlet compilation

In order to succesfully compile a Processlet implementation, you will need to make the Processlet API avail-
able to the compiler. Generally, this means that the Java module deegree-services-wps (and it’s depen-
dencies) have to be on the build path. We suggest to use Apache Maven for this. Here’s an example POM for your
convenience:

Java process provider: Example Maven POM for compiling processlets

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<artifactId>processlet-examples</artifactId>
<packaging>jar</packaging>
<name>processlet-examples</name>
<description>Maven project for compiling Processlets</description>

<parent>
<groupId>org.deegree</groupId>
<artifactId>deegree</artifactId>
<version>3.3.10</version>

</parent>

<repositories>
<repository>

<id>deegree-repo</id>
<url>http://repo.deegree.org/content/groups/public</url>
<releases>
<updatePolicy>never</updatePolicy>

</releases>
<snapshots>
<enabled>true</enabled>

</snapshots>
</repository>

</repositories>

<dependencies>
<dependency>

<groupId>org.deegree</groupId>
<artifactId>deegree-services-wps</artifactId>
<version>3.3.10</version>

</dependency>
</dependencies>

</project>

Tip: You can use this POM to compile the example Processlets above. Just create an empty directory somewhere
and save the example POM as pom.xml. Place the Processlet Java files into subdirectory src/main/java/
(as files Processlet42.java / AdditionProcesslet.java). On the command line, change to the
project directory and use mvn package (Apache Maven 3.0 and a compatible Java JDK have to be installed).
Subdirectory target should now contain a JAR file that you can copy into the modules/ directory of the

14.1. Java process provider 135

deegree Webservices, Release 3.3.10

deegree workspace.

Testing Processlets using raw WPS requests

Hint: In order to perform WPS request to access your process provider/Processlet, you need to have an active
Web Processing Service (WPS) resource in your workspace (which handles the WPS protocol and forwards the
request to the process provider and the processlet).

The general idea of the WPS specification is that a client connects to a WPS server and invokes processes offered
by the server to perform a computation. However, in some cases, you may just want to send raw WPS requests
to a server and check the response yourself (e.g. for testing the behaviour of your processlet). The WPS 1.0.0
specification defines KVP, XML and SOAP-encoded requests. All encodings are supported by the deegree WPS,
so you can choose the most appropriate one for your use-case. For sending KVP-requests, you can simply use
your web browser (or a command line tools like wget or curl). XML or SOAP requests can be send using deegree’s
generic client.

Some KVP GetCapabilities/DescribeProcess request examples for checking the metadata of pro-
cesses:

• http://127.0.0.1:8080/services/wps?service=WPS&request=GetCapabilities

• http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=Process42

• http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=AdditionProcess

Some simple KVP Execute request examples for invoking processes:

• http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Process42

• http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Addition&datainputs=SummandA=21;SummandB=21

Tip: The WPS 1.0.0 specification (and the deegree WPS) support many features with regard to process invoca-
tion, such as input parameter passing (inline or by reference), return parameters (inline or by reference), response
variants and asynchronous execution. Example workspace 4: Web Processing Service demo contains XML exam-
ple requests which demonstrate most of these features.

14.1.6 Input and output parameters

Besides the process logic, the most crucial topic of WPS process implementation is the standard-compliant defi-
nition and handling of input and output parameters. The deegree WPS and the Java process provider support all
parameter types that are defined by the WPS 1.0.0 specification:

• LiteralInput/LiteralOutput: Literal values, e.g. “red”, “42” or “highway 66”

• BoundingBoxInput/BoundingBoxOutput: A geo-referenced bounding box

• ComplexInput/ComplexOutput: Either an XML structure (e.g. GML encoded features) or binary
data (e.g. coverage data as GeoTIFF)

In order to create your own process, first find out which input and output parameters you want it to have. During
implementation, each parameter has to be considered twice:

• It has to be defined in the resource configuration file

• It has to be read or written in the Processlet

The definition in the resource configuration is mostly to specify metadata (identifier, title, abstract, datatype) of the
parameter. The WPS will report it in response to DescribeProcess requests. When performing Execute
requests, the deegree WPS will also perform a basic check of the validity of the input parameters (identifier,
number of occurences, type) and respond with an ExceptionReport if the constraints are not met.

136 Chapter 14. Process providers

http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps

deegree Webservices, Release 3.3.10

Basics of defining input and output parameters

In order to define a parameter of a process, create a new child element in your process provider configuration:

• Input: Add a LiteralInput, BoundingBoxInput or ComplexInput element to section
InputParameters

• Output: Add a LiteralOutput, BoundingBoxOutput or ComplexOutput element to section
OutputParameters

Here’s an InputParameters example that defines four parameters:

Java process provider: Example for InputParameters section

<InputParameters>
<LiteralInput>

<Identifier>LiteralInput</Identifier>
<Title>Example literal input </Title>
<Abstract>This parameter specifies how long the execution of the process takes (the process sleeps for this time).

May be specified in seconds or minutes.</Abstract>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>seconds</DefaultUOM>
<OtherUOM>minutes</OtherUOM>

</LiteralInput>
<BoundingBoxInput>

<Identifier>BBOXInput</Identifier>
<Title>BBOXInput</Title>
<DefaultCRS>EPSG:4326</DefaultCRS>

</BoundingBoxInput>
<ComplexInput>

<Identifier>XMLInput</Identifier>
<Title>XMLInput</Title>
<DefaultFormat mimeType="text/xml" />

</ComplexInput>
<ComplexInput>

<Identifier>BinaryInput</Identifier>
<Title>BinaryInput</Title>
<DefaultFormat mimeType="image/png" encoding="base64" />

</ComplexInput>
</InputParameters>

Here’s an OutputParameters example that defines four parameters:

14.1. Java process provider 137

deegree Webservices, Release 3.3.10

Java process provider: Example for OutputParameters section

<OutputParameters>
<LiteralOutput>

<Identifier>LiteralOutput</Identifier>
<Title>A literal output parameter</Title>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>seconds</DefaultUOM>

</LiteralOutput>
<BoundingBoxOutput>

<Identifier>BBOXOutput</Identifier>
<Title>A bounding box output parameter</Title>
<DefaultCRS>EPSG:4326</DefaultCRS>

</BoundingBoxOutput>
<ComplexOutput>

<Identifier>XMLOutput</Identifier>
<Title>An XML output parameter</Title>
<DefaultFormat mimeType="text/xml" />

</ComplexOutput>
<ComplexOutput>

<Identifier>BinaryOutput</Identifier>
<Title>A binary output parameter</Title>
<DefaultFormat mimeType="image/png" encoding="base64" />

</ComplexOutput>
</OutputParameters>

Each parameter definition element has the following common options:

Option Cardinality Value Description
Identifier 1 String Identifier of the parameter
Title 1 String Short and meaningful title (metadata)
Abstract 0..1 String Short, human readable description (metadata)
Metadata 0..n String Additional metadata

Besides the identifier of the parameter, these parameters just define metadata that the WPS reports. Additionally,
each input parameter definition element supports the following two attributes:

Option Cardinality Value Description
@minOccurs 0..n Integer Minimum number of times the input has to be present in a request, default: 1
@maxOccurs 0..n String Maximum number of times the input has to be present in a request, default: 1

The differences and special options of the individual parameter types (Literal, Bounding Box, Complex) are
described in the following sections.

Basics of accessing input and output parameters

The first two arguments of Processlet#process(..) provide access to the input parameter values and
output parameter sinks. The first argument is of type ProcessletInputs and encapsulates the process
input parameters. Here’s an example snippet that shows how to access the input parameter with identifier
LiteralInput:

public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)
throws ProcessletException {

ProcessletInput literalInput = in.getParameter("LiteralInput");
[...]

}

The getParameter(...) method of ProcessletInputs takes the identifier of the process parameter as
an argument and returns a ProcessletInput (without the s) object that provides access to the actual value of
the process parameter. Here’s the ProcessletInput interface:

138 Chapter 14. Process providers

deegree Webservices, Release 3.3.10

public interface ProcessletInput {

/**
* Returns the identifier or name of the input parameter as defined in the process description.

*
* @return the identifier of the input parameter

*/
public CodeType getIdentifier();

/**
* Returns the title that has been supplied with the input parameter, normally available for display to a human.

*
* @return the title provided with the input, may be null

*/
public LanguageString getTitle();

/**
* Returns the narrative description that has been supplied with the input parameter, normally available for display

* to a human.

*
* @return the abstract provided with the input, may be null

*/
public LanguageString getAbstract();

}

This interface does not provide access to the passed value, but ProcessletInput is the parent of three Java
types that directly correspond to three input parameter types of the process provider configuration:

Figure 14.2: ProcessletInput interface and sub types for each parameter type

For example, if your input parameter definition “A” is a BoundingBoxInput, then the Java type for this pa-
rameter will be BoundingBoxInput as well. In your Java code, use a type cast to narrow the return type (and
gain access to the passed value):

public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)
throws ProcessletException {

BoundingBoxInput inputA = (BoundingBoxInput) in.getParameter("A");
[...]

14.1. Java process provider 139

deegree Webservices, Release 3.3.10

}

Tip: If an input parameter can occur multiple times (maxOccurs > 1 in the definition), use method
getParameters(...) instead of getParameter(...). The latter method returns a List of
ProcessletInput objects.

Output parameters are treated in a similar manner. The second parameter of Processlet#process(..)
provides to output parameter sinks. It is of type ProcessletOutputs. Here’s a basic usage example:

public void process(ProcessletInputs in, ProcessletOutputs out, ProcessletExecutionInfo info)
throws ProcessletException {

ProcessletOutput literalOutput = out.getParameter("LiteralOutput");
[...]

}

Here’s the ProcessletOutput interface:

public interface ProcessletOutput {

/**
* Returns the identifier or name of the output parameter as defined in the process description.

*
* @return the identifier of the output parameter

*/
public CodeType getIdentifier();

/**
* Returns the title that has been supplied with the request of the output parameter, normally available for display

* to a human.

*
* @return the title provided with the output, may be null

*/
public LanguageString getSubmittedTitle();

/**
* Returns the narrative description that has been supplied with the request of the output parameter, normally

* available for display to a human.

*
* @return the abstract provided with the output, may be null

*/
public LanguageString getSubmittedAbstract();

/**
* Returns whether this output parameter has been requested by the client, i.e. if it will be present in the result.

* <p>

* NOTE: If the parameter is requested, the {@link Processlet} must set a value for this parameter, if not, it may

* or may not do so. However, for complex output parameters that are not requested, it is advised to omit them for

* more efficient execution of the {@link Processlet}.

* </p>

*
* @return true, if the {@link Processlet} must set the value of this parameter (in this execution), false otherwise

*/
public boolean isRequested();

/**
* Sets the parameter title in the response sent to the client.

*
* @param title

* the parameter title in the response sent to the client

*/
public void setTitle(LanguageString title);

140 Chapter 14. Process providers

deegree Webservices, Release 3.3.10

/**
* Sets the parameter abstract in the response sent to the client.

*
* @param summary

* the parameter abstract in the response sent to the client

*/
public void setAbstract(LanguageString summary);

}

Again, there are three subtypes. Each subtype of ProcessletOutput corresponds to one output parameter
type:

Figure 14.3: ProcessletOutput interface and sub types for each parameter type

Literal parameters

Literal input and output parameter definitions have the following additional options:

Option Cardinal-
ity

Value Description

DataType 0..1 String Data Type of this input (or output), default: unspecified
(string)

DefaultUOM 0..1 String Default unit of measure, default: unspecified
OtherUOM 0..n String Alternative unit of measure
DefaultValue 0..1 String Default value of this input (only for inputs)
AllowedValues 0..1 Com-

plex
Constraints based on value sets and ranges (only for inputs)

ValidValueRefer-
ence

0..1 Com-
plex

References to externally defined value sets and ranges (only
for inputs)

These options basically define metadata that the WPS publishes to clients. For the sub-
options of the AllowedValues and ValidValueReference options, please refer to the
WPS 1.0.0 specification or the XML schema for the Java process provider configuration format
(http://schemas.deegree.org/processes/java/3.0.0/java.xsd).

In order to work with a LiteralInput parameter in the Processlet code, the corresponding Java type offers the
following methods:

/**
* Returns the literal value.

*
* @see #getUOM()

14.1. Java process provider 141

http://www.opengeospatial.org/standards/wps
http://schemas.deegree.org/processes/java/3.0.0/java.xsd

deegree Webservices, Release 3.3.10

* @return the literal value (has to be in the correct UOM)

*/
public String getValue();

/**
* Returns the UOM (unit-of-measure) for the literal value, it is guaranteed that the returned UOM is supported for

* this parameter (according to the process description).

*
* @return the requested UOM (unit-of-measure) for the literal value, may be null if no UOM is specified in the

* process description

*/
public String getUOM();

/**
* Returns the (human-readable) literal data type from the process definition, e.g. <code>integer</code>,

* <code>real</code>, etc).

*
* @return the data type, or null if not specified in the process definition

*/
public String getDataType();

Similarly, the LiteralOutput type offers the following methods:

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

*
* @see #getRequestedUOM()

* @param value

* value to be set (in the requested UOM)

*/
public void setValue(String value);

/**
* Returns the requested UOM (unit-of-measure) for the literal value, it is guaranteed that this UOM is supported

* for this parameter (according to the process description).

*
* @return the requested UOM (unit-of-measure) for the literal value, may be null

*/
public String getRequestedUOM();

/**
* Returns the announced literal data type from the process definition (e.g. integer, real, etc) as an URI, such as

* <code>http://www.w3.org/TR/xmlschema-2/#integer</code>.

*
* @return the data type, or null if not specified in the process definition

*/
public String getDataType();

BoundingBox parameters

BoundingBox input and output parameter definitions have the following additional options:

Option Cardinality Value Description
DefaultCRS 1 String Identifier of the default coordinate reference system
OtherCRS 0..n String Additionally supported coordinate reference system

In order to work with a BoundingBoxInput parameter in the Processlet code, the corresponding Java type
offers the following methods:

/**
* Returns the lower corner point of the bounding box.

*

142 Chapter 14. Process providers

deegree Webservices, Release 3.3.10

* @return the lower corner point

*/
public double[] getLower();

/**
* Returns the upper corner point of the bounding box.

*
* @return the upper corner point

*/
public double[] getUpper();

/**
* Returns the CRS (coordinate reference system) name of the bounding box.

*
* @return the CRS (coordinate reference system) name or null if unspecified

*/
public String getCRSName();

/**
* Returns the bounding box value, it is guaranteed that the CRS (coordinate reference system) of the returned

* {@link Envelope} is supported for this parameter (according to the process description).

*
* @return the value

*/
public Envelope getValue();

Similarly, the BoundingBoxOutput type offers the following methods:

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

*
* @param lowerX

* @param lowerY

* @param upperX

* @param upperY

* @param crsName

*/
public void setValue(double lowerX, double lowerY, double upperX, double upperY, String crsName);

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

*
* @param lower

* @param upper

* @param crsName

*/
public void setValue(double[] lower, double[] upper, String crsName);

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

*
* @param value

* value to be set

*/
public void setValue(Envelope value);

Complex parameters

Complex input and output parameter definitions have the following additional options:

14.1. Java process provider 143

deegree Webservices, Release 3.3.10

Option Cardinality Value Description
@maximumMegabytes 0..n Integer Maximum file size, in megabytes (only for inputs)
DefaultFormat 1 Complex Definition of the default XML or binary format
OtherFormats 0..n Complex Definition of an alternative XML or binary format

A complex format (DefaultFormat/OtherFormat) is defined via three attributes (compare with the WPS
1.0.0 specification):

Option Cardinality Value Description
@mimeType 0..1 String Mime type of the content, default: unspecified
@encoding 0..1 String Encoding of the content, default: unspecified
@schema 0..1 String XML schema of the content, default: unspecified

In order to work with a ComplexInput parameter in the Processlet code, the corresponding Java type offers the
following methods:

/**
* Returns the mime type of the input.

*
* @return the mime type of the input, may be <code>null</code>

*/
public String getMimeType();

/**
* Returns the encoding information supplied with the input.

*
* @return the encoding information supplied with the input, may be <code>null</code>

*/
public String getEncoding();

/**
* Returns the schema URL supplied with the input.

*
* @return the schema URL supplied with the input, may be <code>null</code>

*/
public String getSchema();

/**
* Returns an {@link InputStream} for accessing the complex value as a raw stream of bytes (usually for binary

* input).

* <p>

* NOTE: Never use this method if the input parameter is encoded in XML -- use {@link #getValueAsXMLStream()}

* instead. Otherwise erroneous behaviour has to be expected (if the input value is given embedded in the execute

* request document).

* </p>

*
* @see #getValueAsXMLStream()

* @return the input value as a raw stream of bytes

* @throws IOException

* if accessing the value fails

*/
public InputStream getValueAsBinaryStream()

throws IOException;

/**
* Returns an {@link XMLStreamReader} for accessing the complex value as an XML event stream.

* <p>

* NOTE: Never use this method if the input parameter is a binary value -- use {@link #getValueAsBinaryStream()}

* instead.

* </p>

* The returned stream will point at the first START_ELEMENT event of the data.

*
* @return the input value as an XML event stream, current event is START_ELEMENT (the root element of the data

* object)

144 Chapter 14. Process providers

http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps

deegree Webservices, Release 3.3.10

* @throws IOException

* if accessing the value fails

* @throws XMLStreamException

*/
public XMLStreamReader getValueAsXMLStream()

throws IOException, XMLStreamException;

Similarly, the ComplexOutput type offers the following methods:

/**
* Returns a stream for writing binary output.

*
* @return stream for writing binary output, never <code>null</code>

*/
public OutputStream getBinaryOutputStream();

/**
* Returns a stream for for writing XML output. The stream is already initialized with a

* {@link XMLStreamWriter#writeStartDocument()}.

*
* @return a stream for writing XML output, never <code>null</code>

* @throws XMLStreamException

*/
public XMLStreamWriter getXMLStreamWriter()

throws XMLStreamException;

/**
* Returns the requested mime type for the complex value, it is guaranteed that the mime type is supported for this

* parameter (according to the process description).

*
* @return the requested mime type, never <code>null</code> (as each complex output format has a default mime type)

*/
public String getRequestedMimeType();

/**
* Returns the requested XML format for the complex value (specified by a schema URL), it is guaranteed that the

* format is supported for this parameter (according to the process description).

*
* @return the requested schema (XML format), may be <code>null</code> (as a complex output format may omit schema

* information)

*/
public String getRequestedSchema();

/**
* Returns the requested encoding for the complex value, it is guaranteed that the encoding is supported for this

* parameter (according to the process description).

*
* @return the requested encoding, may be <code>null</code> (as a complex output format may omit encoding

* information)

*/
public String getRequestedEncoding();

14.1.7 Asynchronous execution and status information

The WPS protocol offers support for asynchronous execution of processes as well as providing status information
for long running processes. The following two options of the Java process provider deal with this:

• @storeSupported: If the storeSupported attribute is set to true, asynchronous execution of the process
will be possible. A WPS client can then choose between synchronous execution (default) and asynchronous
execution. Note that this doesn’t add any requirements to the implementation of the Processlet code, this is
taken care of automatically by the deegree WPS.

14.1. Java process provider 145

deegree Webservices, Release 3.3.10

• @statusSupported: If statusSupported is set to true, the WPS will announce that the process can
provide status information, i.e. execution percentage. In order for this to work, the Processlet code has to
provide status information.

Providing status information in the Processlet code

The third parameter that’s passed to the execute(...) method is of type ProcessletExecutionInfo.
This type provides the following methods:

/**
* Allows the {@link Processlet} to indicate the percentage of the process that has been completed, where 0 means

* the process has just started, and 99 means the process is almost complete. This value is expected to be accurate

* to within ten percent.

*
* @param percentCompleted

* the percentage value to be set, a number between 0 and 99

*/
public void setPercentCompleted(int percentCompleted);

/**
* Allows the {@link Processlet} to provide a custom started message for the client.

*
* @param message

*/
public void setStartedMessage(String message);

/**
* Allows the {@link Processlet} to provide a custom finished message for the client.

*
* @param message

*/
public void setSucceededMessage(String message);

Tip: Depending on the type of computation that a Processlet performs, it may or may not be trivial to provide
correct progress information via setPercentCompleted(...).

146 Chapter 14. Process providers

CHAPTER

FIFTEEN

COORDINATE REFERENCE SYSTEMS

Coordinate reference system identifiers are used in many places in deegree webservices:

• In incoming service requests (e.g. GetFeature-requests to the WFS)

• In a lot of resource configuration files (e.g. in Feature stores)

deegree has an internal CRS database that contains many commonly used coordinate reference systems. Some
examples for valid CRS identifiers:

• EPSG:4258

• http://www.opengis.net/gml/srs/epsg.xml#4258

• urn:ogc:def:crs:epsg::4258

• urn:opengis:def:crs:epsg::4258

Tip: As a rule of thumb, deegree’s CRS database uses the EPSG:12345 identifier variant to indicate XY
axis order, while the URN variants (such as urn:ogc:def:crs:epsg::12345) always use the official axis
order defined by the EPSG. For example EPSG:4258 and urn:ogc:def:crs:epsg::4258 both refer to
ETRS89, but EPSG:4258 means ETRS89 in XY-order, while urn:ogc:def:crs:epsg::4258 is YX (the
official order defined by the EPSG for this CRS).

Note: The CRS subsystem is not fully integrated with the deegree workspace yet. Rework and proper documen-
tation are on the roadmap for one of the next releases. If you have trouble finding a specific CRS, please contact
the deegree mailing lists for support.

147

http://www.deegree.org/Community
http://www.deegree.org/Community

deegree Webservices, Release 3.3.10

148 Chapter 15. Coordinate reference systems

CHAPTER

SIXTEEN

DEEGREE REST INTERFACE

deegree offers a REST like web interface to access and configure the deegree workspace. You can use it to alter
configuration, restart workspaces or resources and start a different workspace.

16.1 Setting up the interface

The servlet that handles the REST interface is already running if you use the standard web.xml deployment
descriptor. For security reasons, you’ll need to add a user with the role deegree to your Tomcat configuration,
eg. by adding an appropriate line to the conf/tomcat-users.xml file.

Once you did that, you can get an overview of available ‘commands’ by requesting
http://localhost:8080/deegree-webservices/config. You’ll need to provide the user-
name/password you configured in your Tomcat configuration.

Here’s an example output:

No action specified.

Available actions:
GET /config/download[/path] - download currently running workspace or file in workspace
GET /config/download/wsname[/path] - download workspace with name <wsname> or file in workspace
GET /config/restart - restart currently running workspace
GET /config/restart/wsname - restart with workspace <wsname>
GET /config/listworkspaces - list available workspace names
GET /config/list[/path] - list currently running workspace or directory in workspace
GET /config/list/wsname[/path] - list workspace with name <wsname> or directory in workspace
GET /config/invalidate/datasources/tile/id/matrixset[?bbox=] - invalidate part or all of a tile store cache’s tile matrix set
PUT /config/upload/wsname.zip - upload workspace <wsname>
PUT /config/upload/path/file - upload file into current workspace
PUT /config/upload/wsname/path/file - upload file into workspace with name <wsname>
DELETE /config/delete[/path] - delete currently running workspace or file in workspace
DELETE /config/delete/wsname[/path] - delete workspace with name <wsname> or file in workspace

HTTP response codes used:
200 - ok
403 - if you tried something you shouldn’t have
404 - if a file or directory needed to fulfill a request was not found
500 - if something serious went wrong on the server side

16.2 Detailed explanation

Let’s see how the commands work in detail. In general, you can specify a path relative to the workspace almost
anywhere. With no path given, you act on the workspace, with a path given, you act on that part of the workspace.

149

deegree Webservices, Release 3.3.10

16.2.1 Downloading

In order to download the complete workspace, you request http://localhost:8080/deegree-webservices/config/download.
Since the workspace is made up of many files, you get a .zip file. If you
just want to download the featurestore configuration named inspire, you request
http://localhost:8080/deegree-webservices/config/download/datasources/feature/inspire.xml.

To use a different workspace instead of the currently running one, use
http://localhost:8080/deegree-webservices/config/download/otherworkspace
(you may also specify a file within that workspace).

16.2.2 Restarting

You can restart the currently running workspace using http://localhost:8080/deegree-webservices/config/restart,
or start another workspace using http://localhost:8080/deegree-webservices/config/restart/anotherworkspace.

16.2.3 Listing

You can see what workspaces are available to the deegree installation by running
http://localhost:8080/deegree-webservices/config/listworkspaces.

You can also browse through a workspace’s files by requesting eg.
http://localhost:8080/deegree-webservices/config/list/datasources/,
or to see the files in a workspace other than the one currently running
http://localhost:8080/deegree-webservices/config/list/someworkspace/services/.

16.2.4 Storing

You can update or add files in a workspace, or upload a completely new workspace by sending a HTTP PUT
request.

To upload a new workspace, send a .zip file with the workspace contents to
http://localhost:8080/deegree-webservices/config/upload/someworkspace.zip.
This will extract the workspace as someworkspace. Note that there should not be a parent directory in the
.zip, it should contain folders like datasources or service directly.

To upload individual files send requests against http://localhost:8080/deegree-webservices/config/upload/path/to/file.xml,
or with a workspace name prefix as usual (http://localhost:8080/deegree-webservices/config/upload/someworkspace/and/the/path/file.xml).

16.2.5 Deleting

Deletion works just like storing, except you send HTTP DELETE requests and instead of the upload path
component you use delete. You can also delete whole directories with content by specifying just the path to the
directory. Deleting workspaces is also possible, just specify the workspace name (without a .zip suffix).

16.2.6 Invalidating tile store caches

This is a special operation only possible for CachingTileStore resources.
You can invalidate the whole cache, or just a part of it by requesting
http://localhost:8080/deegree-webservices/config/invalidate/datasources/tile/configname/matrixsetname.
You can specify a bounding box by appending it in the form ?bbox=minx,miny,maxx,maxy (just like in
WMS requests).

150 Chapter 16. deegree REST interface

CHAPTER

SEVENTEEN

JAVA MODULES AND LIBRARIES

deegree webservices is a Java web application and based on code written in the Java programming language. As
a user, you usually don’t need to care about this, unless you want to extend the default functionality available
in a deegree webservices setup. This chapter provides some basic knowledge of JAR (Java archive) files, the
Java classpath and describes how deegree webservices finds JARs. Additionally, it provides precise instructions
for adding JARs so your deegree webservices instance can connect to Oracle Spatial and Microsoft SQL Server
databases.

Hint: The terms JAR, module and library are used interchangeably in this chapter.

17.1 Java code and the classpath

Java code is usually packaged in JAR files. If you want to extend deegree’s codebase, you will have to add one
or more JAR files to the so-called classpath 1. Basically, there are two different types of classpaths that determine
which JAR files are available to deegree webservices:

• The web application classpath

• The workspace classpath

The full classpath used by deegree webservices consists of the web application classpath and the workspace
classpath. If conflicting files exist on both classpaths, the file on the workspace classpath takes precedence.

Tip: If you’re not familiar with classpath concepts and don’t have any special requirements, simply add your
JAR files to the workspace classpath and ignore the web application classpath.

17.1.1 Web application classpath

As deegree webservices is a Java web application, standard paths apply:

• Directory WEB-INF/lib of the deegree web application (for JARs)

• Directory WEB-INF/classes of the deegree web application (for Java class files)

• Global directories for all web applications running in the container (depends on the actual web container)

When you add files to the web application claspath, you have to restart the web application or the web application
container to make the new code available to deegree webservices.

Hint: All Java libraries shipped with deegree webservices are located in the WEB-INF/lib direc-
tory of the deegree webservices webapp. If you downloaded the ZIP version, this directory is located in
webapps/ROOT/WEB-INF/lib.

1 The term classpath describes the set of files or directories which are used to find the available Java code (JARs and class files).

151

deegree Webservices, Release 3.3.10

17.1.2 Workspace classpath

When deegree webservices initializes the workspace, it scans directory modules/ of the active deegree
workspace for files ending with .jar and adds them to the classpath. This can be very handy, as it allows to
create self-contained workspaces (no fiddling with other directories required) and also has the benefit the you can
reload the deegree workspace only after adding your libraries (instead of restarting the deegree webapp or the
whole web application container).

Hint: In addition to workspace directory modules/, directory classes/ can be used to add individual Java
classes (and other files) to the classpath. This is usually not required.

17.2 Checking available JARs

In order to see which JARs are available to your deegree webservices instance/workspace, use the “module info”
link in the general section of the service console:

Figure 17.1: Displaying available JARs using the service console

The list of JARs section displays the JARs found on the web application classpath, while the lower section displays
the JARs found on the workspace classpath.

17.3 Adding database modules

By default, deegree webservices includes everything that is needed for connecting to PostgreSQL/PostGIS and
Derby databases. If you want to connect to an Oracle Spatial or Microsoft SQL Server instance, you need to
add additional Java libraries manually, as the required JDBC libraries are not included in the deegree webservices
download (for license reasons).

17.3.1 Adding Oracle support

The following deegree resources support Oracle Spatial databases (10g, 11g):

• SimpleSQLFeatureStore

152 Chapter 17. Java modules and libraries

deegree Webservices, Release 3.3.10

• SQLFeatureStore

• ISOMetadataStore

In order to enable Oracle connectivity for these resources, you need to add two JAR files (see Java code and the
classpath):

• A compatible Oracle JDBC6-type driver (e.g. ojdbc6-11.2.0.2.jar) 2

• Module deegree-sqldialect-oracle 3

17.3.2 Adding Microsoft SQL server support

The following deegree resources support Microsoft SQL Server (2008, 2012):

• SimpleSQLFeatureStore

• SQLFeatureStore

• ISOMetadataStore

In order to enable Microsoft SQL Server connectivity for these resources, you need to add two JAR files (see Java
code and the classpath):

• A compatible Microsoft JDBC driver (e.g. sqljdbc4-3.0.jar) 4

• Module deegree-sqldialect-mssql 5

2 http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html (registration required)
3 http://repo.deegree.org/content/repositories/public/org/deegree/deegree-sqldialect-oracle/3.3.10/deegree-sqldialect-oracle-3.3.10.jar
4 http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx
5 http://repo.deegree.org/content/repositories/public/org/deegree/deegree-sqldialect-mssql/3.3.10/deegree-sqldialect-mssql-3.3.10.jar

17.3. Adding database modules 153

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://repo.deegree.org/content/repositories/public/org/deegree/deegree-sqldialect-oracle/3.3.10/deegree-sqldialect-oracle-3.3.10.jar
http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx
http://repo.deegree.org/content/repositories/public/org/deegree/deegree-sqldialect-mssql/3.3.10/deegree-sqldialect-mssql-3.3.10.jar

	Introduction
	Characteristics of deegree WFS
	Characteristics of deegree WMS
	Characteristics of deegree WMTS
	Characteristics of deegree CSW
	Characteristics of deegree WPS

	Installation
	System requirements
	Downloading
	Starting and stopping

	Getting started
	Accessing deegree's service console
	Example workspace 1: INSPIRE Network Services
	Example workspace 2: Utah Webmapping Services
	Example workspace 3: An ISO Catalogue Service setup
	Example workspace 4: Web Processing Service demo

	Configuration basics
	The deegree workspace
	Location of the deegree workspace directory
	Structure of the deegree workspace directory
	Using the service console for managing resources
	Best practices for creating workspaces

	Web services
	Web Feature Service (WFS)
	Web Map Service (WMS)
	Web Map Tile Service (WMTS)
	Catalogue Service for the Web (CSW)
	Web Processing Service (WPS)
	Metadata
	Service controller

	Feature stores
	Features, feature types and application schemas
	Shape feature store
	Memory feature store
	Simple SQL feature store
	SQL feature store

	Tile stores
	Tile stores, tile data sets and tile matrix sets
	GeoTIFF tile store
	File system tile store
	Remote WMS tile store
	Remote WMTS tile store

	Coverage stores
	Raster
	MultiResolutionRaster
	Pyramid

	Metadata stores
	Memory ISO Metadata store
	SQL ISO Metadata store
	SQL EBRIM/EO Metadata store

	Map layers
	Common configuration
	Feature layers
	Tile layers
	Coverage layers
	Remote WMS layers

	Map themes
	Standard themes
	Remote WMS themes

	Map styles
	SLD/SE clarifications
	deegree specific extensions
	Example

	Server connections
	JDBC connections
	Remote OWS connections

	Process providers
	Java process provider

	Coordinate reference systems
	deegree REST interface
	Setting up the interface
	Detailed explanation

	Java modules and libraries
	Java code and the classpath
	Checking available JARs
	Adding database modules

