deegree OSGEO

Pr0]ect

deegree Webservices

Version 3.6.1, 2025-09-04

Table of Contents

1. Introduction
1.1. Characteristics of deegree WFS
1.2. Characteristics of deegree WMS
1.3. Characteristics of deegree WMTS
1.4. Characteristics of deegree CSW
1.5. Characteristics of deegree WPS
2. Installation
2.1. System requirements
2.2. Downloading
2.3. Starting and stopping
2.4. Securing deegree
2.4.1. Software Versions
2.4.2. Encryption
2.4.3. Securing the deegree webservices administration console and REST API
2.5. Logging configuration
2.5.1. Autoconfiguration
2.5.2. File-based configuration
2.5.3. Providing another logging framework
3. Getting started
3.1. Accessing the deegree webservices administration console
3.1.1. Downloading and activating example workspaces
3.2. Example workspace 1: Utah Web Mapping Services
3.3. Example workspace 2: An ISO Catalogue Service setup
3.4. Example workspace 3: Web Processing Service demo
4. Configuration basics
4.1. The deegree workspace
4.2. Dependencies of the deegree configuration files
4.3. Location of the deegree workspace directory
4.3.1. UNIX-like/Linux/macOS
4.3.2. Windows
4.3.3. Global configuration files and the active workspace
4.4. Structure of the deegree workspace directory
4.4.1. Workspace files and resources
4.4.2. Resource identifiers and dependencies
4.4.3. Proxy configuration
4.5. Using the deegree webservices administration console for managing resources
4.5.1. Displaying configured resources
4.5.2. Deactivating a resource

10
10
11
11
12
12
14
14
14
14
15
16
16
16
16
17
18
20
21
21
22
23
24
26
31
31
32
33
33
34
34
35
36
37
38
40
41
41

4.5.3. Editing a resource

4.5.4. Deleting a resource

4.5.5. Creating a new resource
4.5.6. Displaying error messages

4.5.7. Resource type specific actions

4.6. Best practices for creating workspaces

4.6.1. Start from example or from scratch
4.6.2. Find out which resources you need
4.6.3. Use a validating XML editor

4.6.4. Check the resource status and error messages

5. Web services
5.1. Web Feature Service (WFS)

5.1.1. Minimal example

5.1.2. More complex example

5.1.3. Configuration overview

5.1.4. General options

5.1.5. Transactions

5.1.6. SupportedRequests

5.1.7. Output formats and defaults

5.1.8. Adapting GML output formats
Basic GML format options
GetFeature response settings
Coordinate formatters
Geometry linearization

5.1.9. Adding GeoJSON output formats

5.1.10. Adding CSV output formats

5.1.11. Adding custom output formats

5.1.12. Stored queries

5.1.13. Extended capabilities

5.1.14. Special Features

5.2. Web Map Service (WMS)

5.2.1. Aword on layers and themes
5.2.2. Configuration overview
5.2.3. Basic options

5.2.4. SupportedRequests

5.2.5. Service content configuration
5.2.6. Visibility Inspector

5.2.7. Custom capabilities formats
5.2.8. Custom feature info formats
5.2.9. Geo]JSON feature info format

5.2.10. FeatureInfo templating format

42
43
44
44
46
46
46
47
48
48
50
50
51
51
52
54
35
56
58
58
60
60
62
62
64
65
66
66
68
68
69
69
70
71
72
73
75
76
76
77
78

Introduction/Example 78

Templating special constructs 80
5.2.11. Custom image output formats 81
Custom legend graphic background 82
Custom format provider class 82
5.2.12. Custom exception formats 83
5.2.13. Extended capabilities 83
5.2.14. Propagation of supported SLD functionality 84
5.2.15. Vendor specific parameters 84
5.2.16. XML request encoding 86
GetCapabilities 86
GetMap 86
GetFeaturelnfo 87
5.2.17. SOAP request encoding 90
Capabilities 90

5.3. Web Map Tile Service (WMTS) 92
5.3.1. Minimal example 92
5.3.2. More complex example 93
5.3.3. Configuration overview 93
5.3.4. A complete WMTS configuration example, based on a GeoTIFFTileStore 94
5.3.5. Optimizing deegree WMTS 96
5.3.6. Supported steps by the deegree webservices administration console 97
5.4. Catalogue Service for the Web (CSW) 97
5.4.1. Minimal example 98
5.4.2. Configuration overview 98
5.4.3. Extended Functionality 99
5.5. Web Processing Service (WPS) 99
5.5.1. Minimal example 100
5.5.2. Complex example 100
5.5.3. Configuration overview 101
5.5.4. DefaultExecutionManager section 102
5.6. Metadata 102
5.6.1. Service identification 104
5.6.2. Service provider 105
5.6.3. Dataset metadata 105
Extended description 107
5.6.4. Extended capabilities 107
5.7. Service controller 107
5.7.1. Reported URLs 108
5.7.2. Request timeouts 109

6. Feature stores 111

6.1. Features, feature types and application schemas 111

6.1.1. Simple vs. rich features and feature types 111
6.1.2. Application schemas 113
6.2. Shape feature store 113
6.2.1. Minimal configuration example 114
6.2.2. More complex configuration example 114
6.2.3. Configuration options 115
6.3. Memory feature store 116
6.3.1. Minimal configuration example 116
6.3.2. More complex configuration example 117
6.3.3. Configuration options 117
6.4. Simple SQL feature store 118
6.4.1. Minimal configuration example 118
6.4.2. More complex configuration example 118
6.4.3. Configuration options 119
6.5. SQL feature store 120
6.5.1. Minimal configuration example 120
6.5.2. More complex configuration example 121
6.5.3. Overview of configuration options 123
6.5.4. Mapping tables to simple feature types 124
Customizing the feature type name 125
Customizing the feature id 126
Customizing the default sort order of features 127
Customizing the mapping between columns and properties 128
6.5.5. Mapping GML application schemas 129
Recommended workflow 130
Mapping rich feature types 131
Mapping strategies for xlink:href attributes 136
Changing the table context 136
Handling of NULL values 140
BLOB mapping 141
6.5.6. Transactions and feature id generation 142
Auto id generator 143
UUID generator 144
Sequence id generator 144
6.5.7. Evaluation of query filters 145
6.5.8. Spatial extent of FeatureTypes 145
6.5.9. Auto-generating database tables 146

7. Tile stores 148
7.1. Tile stores, tile data sets and tile matrix sets 148
7.1.1. Pre-defined tile matrix sets 149

7.1.2. User-defined tile matrix sets
7.2. GeoTIFF tile store
7.2.1. AccessConfig
7.3. File system tile store
7.4. Remote WMS tile store
7.5. Remote WMTS tile store
8. Coverage stores
8.1. Raster
8.2. MultiResolutionRaster
8.3. Pyramid
8.3.1. Prerequisites for Pyramids
8.4. Oracle GeoRaster
9. Metadata stores
9.1. Memory ISO Metadata store
9.2. SQL ISO Metadata store
9.3. SQL EBRIM/EO Metadata store
10. Map layers
10.1. Common configuration
10.1.1. Description metadata
10.1.2. Spatial metadata
10.1.3. Common layer options
Layer dimensions
Layer styles
Rendering options
10.2. Feature layers
10.2.1. Auto layers
10.2.2. Manual configuration
10.3. Tile layers
10.4. Coverage layers
10.4.1. Auto layers
10.4.2. Manual configuration
10.5. Remote WMS layers
10.5.1. Request options
10.5.2. Layer configuration
11. Map themes
11.1. Standard themes
11.2. Remote WMS themes
12. Map styles
12.1. Overview
12.2. Basics
12.2.1. General Layout

149
150
152
152
153
154
156
156
157
158
158
159
162
162
163
165
166
166
166
167
167
168
169
171
172
172
172
174
175
175
175
176
176
178
180
180
182
183
183
184
184

12.2.2. Symbolization Rules
Stroke
Fill
Font
12.2.3. Advanced symbolization
Using Graphics
Size
Gap
Rotation
Displacement
Halo
12.3. Using Filters
12.4. Basic Examples
12.4.1. Point Symbolizer
12.4.2. Line Symbolizer
12.4.3. Polygon Symbolizer
12.4.4. Text Symbolizer
12.5. SLD/SE clarifications
12.5.1. Perpendicular offset/polygon orientation
12.5.2. ScaleDenominators
12.6. deegree specific extensions
12.6.1. SLD/SE extensions
Use of alternative Symbols within the WellKknownName
Predefined symbols
Custom arrow with extshape://arrow
Custom Symbol from SVG path svgpath://
Use Symbol from character code ttf://
Custom Symbol from Well Known Text wkt://
Spacing around the symbol
Simplified hatches
Use of TTF files as Mark symbols
Label AutoPlacement
LinePlacement extensions
ExternalGraphic extensions
Text with rectangular Halo
GraphicStroke extensions
12.6.2. SE & FE Functions
FormatNumber
FormatDate
ChangeCase

Concatenate

184
185
186
186
187
187
189
189
189
190
190
191
191
191
192
193
194
195
195
196
196
196
196
196
197
198
198
198
199
200
201
201
202
202
203
203
205
205
205
206
206

Trim 206

StringLength 207
Substring 207
StringPosition 207
Categorize, Interpolate, Recode 208
General XPath functions 210

13. Filter Encoding 211
13.1. Filter Operators 211
13.1.1. Arithmetic operators 211
13.1.2. Logical operators 211
13.1.3. Comparison operators 212
13.1.4. Spatial operators 212
13.2. Filter expressions 213
13.2.1. Simple filter expressions 213
Comparative filter expression 213
Spatial filter expression 213
13.2.2. Advanced filter expressions 214
Multiple filter operators 214
PropertylIsLike with a function 214
13.2.3. Filter expressions on xlink:href attributes 215
13.3. Custom FE functions 215
13.3.1. Area 215
13.3.2. Length 216
13.3.3. Centroid 216
13.3.4. InteriorPoint 216
13.3.5. IsPoint, IsCurve, IsSurface 216
13.3.6. GeometryFromWKT 217
13.3.7. MoveGeometry 217
13.3.8. iDiv 217
13.3.9.iMod 217
13.3.10. ExtraProp 218
13.3.11. GetCurrentScale 218
13.3.12. env 218
14. Server connections 220
14.1. JDBC connections 220
14.1.1. Minimal configuration example (PostgreSQL) 221
14.1.2. Configuration example (Oracle) 222
14.1.3. Configuration example (Microsoft SQL Server) 222
14.1.4. Configuration example (JNDI) 223
14.1.5. Configuration example (Oracle UCP) 224
14.1.6. Configuration options 225

14.1.7. JDBC connection pools 227

14.1.8. PostgreSQL JDBC 227
14.1.9. HikariCP 227
c3p0 228
14.1.10. Legacy configuration format 228
14.2. Remote OWS connections 229
14.2.1. Remote WMS connection 229
14.2.2. Remote WMTS connection 230

15. Process providers 231
15.1. Java process provider 231
15.1.1. Minimal configuration example 232
15.1.2. More complex configuration example 233
15.1.3. Configuration options 235
15.1.4. General options 236
15.1.5. The Processlet API 237
Processlet compilation 238
Testing Processlets using raw WPS requests 240

15.1.6. Input and output parameters 240
Basics of defining input and output parameters 241

Basics of accessing input and output parameters 244
Literal parameters 247
BoundingBox parameters 249
Complex parameters 251

15.1.7. Asynchronous execution and status information 255
Providing status information in the Processlet code 255

15.2. FME process provider 256
15.2.1. Minimal configuration example 256

16. Coordinate reference systems 257
17. deegree REST interface 258
17.1. Setting up the interface 258
17.2. Detailed explanation 259
17.2.1. Downloading 260
17.2.2. Restarting 260
17.2.3. Updating 260
17.2.4. Listing 260
17.2.5. Storing 260
17.2.6. Deleting 261
17.2.7. Invalidating tile store caches 261
17.2.8. CRS queries 261

18. deegree GML tools CLI 262
18.1. Prerequisite 262

18.2. General Usage
18.3. Using the SqlFeatureStoreConfigCreator CLI
18.3.1. Usage of option cycledepth

18.3.2. Usage of option listOfPropertiesWithPrimitiveHref

18.3.3. Usage of option referenceData
18.3.4. Usage of option useRefDataProps
18.4. Using the GmlLoader CLI GmlLoader
18.4.1. Usage of option skipReferenceCheck
18.5. Examples
18.5.1. Configure proxy
19. Java modules and libraries
19.1. Java code and the classpath
19.1.1. Web application classpath
19.1.2. Workspace classpath
19.2. Checking available JARs
19.3. Adding database modules
19.3.1. Adding Oracle support
19.3.2. Adding Oracle GeoRaster support
19.3.3. Adding Microsoft SQL server support
20. GDAL components
20.1. Connecting GDAL and deegree
20.2. GDAL settings
20.2.1. Minimal GDAL settings example
20.2.2. More complex GDAL settings example
20.2.3. Configuration options
20.3. GDAL Layer
20.3.1. Configuration example
20.4. GDAL Tile Store
20.4.1. Minimal configuration example
20.4.2. More complex configuration example
20.4.3. Configuration options
21. Appendix
21.1. Tunable deegree parameters
21.2. Interception points

21.3. Custom converters for the SQL feature store

262
262
263
263
264
266
266
267
267
268
269
269
269
269
270
270
270
271
271
272
272
273
273
274
274
275
275
275
276
276
277
279
279
281
282

Chapter 1. Introduction

deegree webservices are implementations of the geospatial webservice specifications of the Open
Geospatial Consortium (OGC) and the INSPIRE Network Services. deegree webservices 3.6 includes
the following services:

Web Feature Service (WFS): Provides access to raw geospatial data objects

Web Map Service (WMS): Serves maps rendered from geospatial data

Web Map Tile Service (WMTS): Serves pre-rendered map tiles

Catalogue Service for the Web (CSW): Performs searches for geospatial datasets and services

Web Processing Service (WPS): Executes geospatial processes

With a single deegree webservices installation, you can set up one of the above services, all of them
or even multiple services of the same type. The remainder of this chapter introduces some notable
features of the different service implementations and provides learning trails for learning the
configuration of each service.

1.1. Characteristics of deegree WFS

deegree WFS is an implementation of the OGC Web Feature Service specification. Notable features:

10

Official OGC reference implementation for WFS 1.1.0 and WES 2.0.0

Implements WFS standards 1.0.0, 1.1.0 and 2.0.0"

Fully transactional (even for rich data models)

Supports KVP, XML and SOAP requests

GML 2/3.0/3.1/3.2 output/input

Support for GetGmlObject requests and XLinks

High performance and excellent scalability

On-the-fly coordinate transformation

Designed for rich data models from the bottom up

Backends support flexible mapping of GML application schemas to relational models
ISO 19107-compliant geometry model: Complex geometries (e.g. non-linear curves)
Advanced filter expression support based on XPath 1.0

Supports numerous backends, such as PostGIS, Oracle Spatial, MS SQL Server, Shapefiles or
GML instance documents

In order to learn the setup and configuration of a deegree-based WFS, we
@ recommend to read chapters Installation and Getting started first. Check out
- Example workspace 1: Utah Web Mapping Services for an example deegree WFS
configuration. Continue with Configuration basics and Web Feature Service (WFS).

https://www.ogc.org/
https://www.ogc.org/
https://inspire.jrc.ec.europa.eu
https://www.ogc.org/standard/wfs/
https://www.ogc.org/standard/wms/
https://www.ogc.org/standard/wmts/
https://www.ogc.org/standard/cat/
https://www.ogc.org/standard/wps/
https://www.ogc.org/standard/wfs/

1.2. Characteristics of deegree WMS

deegree WMS is an implementation of the OGC Weh Map Service specification. Notable features:

* Official OGC reference implementation for WMS 1.1.1

« Implements WMS standards 1.1.1 and 1.3.0"”

» Extensive support for styling languages SLD/SE versions 1.0.0 and 1.1.0

* Supports KVP, XML and SOAP requests (WMS 1.3.0)

* High performance and excellent scalability

* High quality rendering

* Scale dependent styling

» Support for SE removes the need for a lot of proprietary extensions

» Easy configuration of HTML and other output formats for GetFeatureInfo responses

» Uses stream-based data access, minimal memory footprint

* Nearly complete support for raster symbolizing as defined in SE (with some extensions)
» Complete support for TIME/ELEVATION and other dimensions for both feature and raster data

* Supports numerous backends, such as PostGIS, Oracle Spatial, Shapefiles or GML instance
documents

* Can render rich data models directly

In order to learn the setup and configuration of a deegree-based WMS, we
@ recommend to read chapters Installation and Getting started first. Check out
- Example workspace 1: Utah Web Mapping Services for an example deegree WMS

configuration. Continue with Configuration basics and Web Map Service (WMS).

1.3. Characteristics of deegree WMTS

deegree WMTS is an implementation of the OGC Web Map Tile Service specification. Notable
features:
* Implements Basic WMTS standard 1.0.0 (KVP)
* High performance and excellent scalability
 Supports different backends, such as GeoTIFF, remote WMS or file system tile image hierarchies
 Supports on-the-fly caching (using EHCache)

» Supports GetFeatureInfo for remote WMS backends
In order to learn the setup and configuration of a deegree-based WMTS, we

@ recommend to read Installation and Getting started first. Continue with
et Configuration basics and Web Map Tile Service (WMTS).

11

https://www.ogc.org/standard/wms/
https://www.ogc.org/standard/wmts/

1.4. Characteristics of deegree CSW

deegree CSW is an implementation of the OGC Catalogue Service specification. Notable features:

Implements CSW standard 2.0.2

Fully transactional

Supports KVP, XML and SOAP requests

High performance and excellent scalability

ISO Metadata Application Profile 1.0.0

Pluggable and modular dataaccess layer allows to add support for new APs and backends
Modular inspector architecture allows to validate records to be inserted against various criteria
Standard inspectors: schema validity, identifier integrity, INSPIRE requirements

Handles all defined queryable properties (for Dublin Core as well as ISO profile)

Complex filter expressions

In order to learn the setup and configuration of a deegree-based CSW, we
recommend to read Installation and Getting started first. Check out Example

(;) workspace 2: An ISO Catalogue Service setup for an example deegree CSW
t configuration. Continue with Configuration basics and Catalogue Service for the
Web (CSW).

1.5. Characteristics of deegree WPS

deegree WPS is an implementation of the OGC Processing Service specification. Notable features:

12

Implements WPS standard 1.0.0

Supports KVP, XML and SOAP requests

Pluggable process provider layer

Easy-to-use API for implementing Java processes

Supports all variants of input/output parameters: literal, bbox, complex (binary and xml)
Streaming access for complex input/output parameters

Processing of huge amounts of data with minimal memory footprint

Supports storing of response documents/output parameters

Supports input parameters given inline and by reference

Supports RawDataOutput/ResponseDocument responses

Supports asynchronous execution (with polling of process status)

https://www.ogc.org/standard/cat/
https://www.ogc.org/standard/wps/

In order to learn the setup and configuration of a deegree-based WPS, we
recommend to readlnstallation and Getting started first. Check out Example

@ workspace 3: Web Processing Service demo for an example deegree WPS
et configuration. Continue with Configuration basics and Web Processing Service
(WPS).

[1] Passes OGC CITE test suites for WFS 1.1.0 Basic and Transactional, and WFS 2.0.0 Basic
[2] Passes OGC WMS CITE test suites (including all optional tests)

13

Chapter 2. Installation

2.1. System requirements

deegree webservices work on any platform with a compatible Java SE 17 installation, including:

¢ Microsoft Windows
e Linux

¢ macOS

Supported Java SE 17 versions are Oracle JDK 17 ™ and Eclipse Temurin JDK 17 ",

Newer Java SE versions such as the LTS versions 21 may work but are not tested by
the community. Please check out our wiki page End of Life and Support Matrix for
further information.

2.2. Downloading

deegree webservices downloads are available on the deegree home page. You have the choice
between:

« Docker : Docker Image with deegree webservices on OpenJDK and Apache Tomcat ™!

« WAR: Generic Java Web Archive for deployment in an existing Java Servlet container '*

If you are confused by the options and unsure which version to pick, use the WAR.
(;) All variants contain exactly the same deegree webservices webapp, they only
v differ in packaging.

2.3. Starting and stopping

In order to run the WAR version, move it into the local deployment directory of your Java Servlet
container. For Apache Tomcat this is the directory $CATALINA_HOME/webapps. Afterwards, start
the Java Servlet container. To start Apache Tomcat open a terminal and change to the directory
$CATALINA_HOME/bin and fire up the included start script for your operating system startup.sh for
Linux or startup.bat for Windows.

If you deploy the WAR into a web container, you most probably will have to use a
different URL for accessing the administration console and webservices, e.g.
http://localhost:8080/deegree-webservices-3.6.1. The port number and webapp

O name depend on your installation and deployment setup. In the following the base
URL http://localhost:8080/deegree-webservices without the version number will be
used. You may rename the WAR file from deegree-webservices-3.6.1.war to deegree-
webservices.war before deploying it.

You should now see a terminal window on your screen with a lot of log messages:

14

https://www.oracle.com/java/technologies/downloads/#java17
https://adoptium.net/en-GB/temurin/releases?version=17&os=any&arch=any
https://github.com/deegree/deegree3/wiki/End-of-Life-and-Support-Matrix
https://www.deegree.org/download/
http://localhost:8080/deegree-webservices-3.6.1
http://localhost:8080/deegree-webservices

Figure 1. deegree webservices starting up

If the application isn’t starting, make sure that the java command is on the system

(r) path. You can verify this by entering java -version at the command prompt. Also

- ensure that JAVA_HOME system environment variable points to the correct
installation directory of a compatible JDK.

You may minimize the terminal window, but don’t close it as long as you want to be able to use the

deegree webservices. In order to check if the services are actually running, open
http://localhost:8080/deegree-webservices in your browser. You should see the following page:

Security hint: No password has been set.

rvice console. IMPORTANT! Set password now!)

Figure 2. deegree webservices administration console

To shut deegree webservices down, switch back to the terminal window and press CTRL+c or
simply close it.

If you want to run deegree webservices on system startup automatically, consider
(2
O installing Apache Tomcat as a system service. Consult the Tomcat documentation
for more information and options.

2.4. Securing deegree

Most weaknesses in deegree come from incorrect or inappropriate configuration. It is nearly
always possible to make deegree more secure than the default out of the box configuration. The
following documents best practices and recommendations on securing a production deegree
server, whether it be hosted on a Windows or Unix based operating system.

15

http://localhost:8080/deegree-webservices
https://tomcat.apache.org
https://tomcat.apache.org/tomcat-10.1-doc/index.html

2.4.1. Software Versions

The first step is to make sure you are running the latest stable releases of software:

* Operating System including the latest updates and security patches
* Java Runtime Environment (JRE) or JDK

* Apache Tomcat, Jetty or your preferred Java Servlet container

» Third-party libraries such as GDAL, JDBC driver, and

* deegree webservices itself.

(r) If you are running Apache Tomcat we recommend that you read and apply all
- recommendations as documented in Apache Tomcat Security Considerations.
2.4.2. Encryption

When operating deegree in a production environment enable HTTPS with SSL or TLS. Either enable
HTTPS on your Java Servlet Container or operate it behind a web server such as Apache httpd oder
NGINX.

O If you are running Apache Tomcat read the SSL configuration HowTo.
-

2.4.3. Securing the deegree webservices administration console and REST
API

It is as a huge security problem to operate the deegree web application without setting a password
for the administration console. How to set the password for the administration console is described
in Configuration basics. The same applies to the deegree REST API. Since both transfer the
credentials as clear text (with a little bit of obscurity) it is highly recommended to enable
encryption on the protocol level as described above! For further information how to protect the
deegree REST API read more in deegree REST interface. You should also consider to limit the access
to both resources. Apply a filter by IP or hostname to only allow a subset of machines to connect
and access the administration console and REST API.

The administration console provides access to the server file system. Therefore,

A you must not operate the Java Servlet container as root user! Furthermore, you
should consider to enable the Java Security Manager and define restrictive file
permissions."”’

2.5. Logging configuration

The deegree webservices do use the Logback Project for logging. Most common logging
requirements can be configured through the autoconfiguration submodule of deegree. The
autoconfiguration submodule can provide logging to console and file, if needed, change the pattern
used and as well set the level of information logged for parts of deegree and its dependencies. If
more extended configurations are needed a Logback configuration file in XML format can be
configured which disables autoconfiguration and allows even complex setups.

16

https://tomcat.apache.org/tomcat-10.1-doc/security-howto.html
https://tomcat.apache.org/tomcat-10.1-doc/ssl-howto.html
https://logback.qos.ch

This section of the manual focuses on the use of the deegree webapps. The deegree

2.5.1. Autoconfiguration

GML tools CLI are similar by including a configuration file as described in
paragraph File-based configuration.

With autoconfiguration and without further configuration provided, log messages are logged to the
console so that they can be found at the same place your server container (e.g. Apache Tomcat)
uses. The logging can be changed by providing system properties or environment variables. When
environment variables are used, these are expected to be written in upper case and have dots

replaced by underscore characters.

The following table lists the available variables.

System Property
logging.level.* LOGGING_LEVEL_*
logging.group.™ LOGGING_GROUP_*

LOGGING_CONSOLE_L
OG_PATTERN

logging.console.log.patt
ern

LOGGING_CONSOLE_L
OG_CHARSET

logging.console.log.char
set

logging.file.name LOGGING_FILE_NAME

logging.file.path LOGGING_FILE_PATH

logging.file.log.pattern LOGGING_FILE_LOG_P

ATTERN

LOGGING_FILE_LOG_C
HARSET

logging.file.log.charset

Environment Variable Description

Defines the logging level (TRACE > DEBUG > INFO >
WARN > ERROR > OFF) of a specific package or class.
When using environment variables, only
packages can be addressed, while individual
classes can also be configured with system
properties. E.g. logging.level.org.deegree=DEBUG
/ LOGGIN_LEVEL_ORG_DEEGREE=DEBUG

If multiple packages or classes should be
addressed at once, these can be grouped under a
group name. E.g. logging.group.my-
group=org.example,com.example,net.example and
logging.level.my-group=INFO.

Pattern used for logging to console e.g. %date
%level %logger{1} [%thread] %msg%n. All
available placeholders are described in the
pattern section of the Logback manual.

Charset used to encode logging output to
console, defaults to UTF-8.

If configured a logfile with this name will be
created. E.g. deegree.log

Path to be used instead of the default folder of
your servlet container to store the logging file.

Pattern used for logging to file, if a file is
configured, e.g. %date %level %logger{1}
[%thread] %msg%n. All available placeholders are
described in the pattern section of the Logbhack
manual.

Charset used to encode logging output to file,
defaults to UTF-8.

17

https://logback.qos.ch/manual/layouts.html#conversionWord
https://logback.qos.ch/manual/layouts.html#conversionWord
https://logback.qos.ch/manual/layouts.html#conversionWord

System Property Environment Variable Description

logging.file.log.threshol LOGGING_FILE_LOG_T Limit messages logged to file by level (TRACE >
d HRESHOLD DEBUG > INFO > WARN > ERROR), defaults to TRACE.

logging.logback.rolling LOGGING_LOGBACK R Iflog archive cleanup should occur on starts
policy.clean-history-on- OLLINGPOLICY_CLEAN (defaults to false).

start -HISTORY-ON-START

logging.logback.rolling LOGGING_LOGBACK R The filename pattern used to create log archives
policy.file-name- OLLINGPOLICY_FILE- (defaults to ${L06_FILE}.%d{yyyy-MM-dd}.%i.gz).
pattern NAME-PATTERN

logging.logback.rolling LOGGING_LOGBACK R The maximum size of log file before it is
policy.max-file-size OLLINGPOLICY_MAX- archived (defaults to 10MB).

FILE-SIZE
logging.logback.rolling LOGGING_LOGBACK R The maximum number of archive log files to
policy.max-history OLLINGPOLICY_MAX- keep (defaults to 7).

HISTORY

logging.logback.rolling LOGGING_LOGBACK R The maximum amount of size log archives can
policy.total-size-cap OLLINGPOLICY_TOTAL- take before being deleted.
SIZE-CAP

As a sensible default, the default log level for its own package org.deegree is set to

(r) INFO. Besides this, the groups deegree-recommendations-error and deegree-
- recommendations-warn are predefined and set to ERROR and WARN as their names
suggest.
To debug the autoconfiguration, the system property
logging.level.org.deegree.logging.autoconfiguration or Environment variable

LOGGING_LEVEL_ORG_DEEGREE_LOGGING_AUTOCONFIGURATION can be set to DEBUG or TRACE so that the status
messages of the logging system configuring itself are sent to the console output.

For details and more configuration options, see Loghack Documentation of status data.

2.5.2. File-based configuration

If autoconfiguration is not desired, a Logback configuration file can be provided in one of the
following ways:

1. Define the system property logback.configurationFile pointing to a configuration file
2. Define the system property logging.config pointing to a configuration file
3. Set the environment variable LOGGING_CONFIG with the file location

4. add a logback.xml configuration file to the classpath of the deegree application

An exemplary configuration may look like:

18

https://logback.qos.ch/manual/configuration.html#dumpingStatusData

<configuration debug="true">
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender"> @
<encoder>
<pattern>%date %level %logger{1} [%thread] %msg%n</pattern> @
</encoder>
</appender>

<variable name="log.prefix" value="deegree" /> ®
<variable name="log.dir" value="logs"/> @

<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender"> ®
<file>${log.dir}/${log.prefix}.log</file> ®
<rollingPolicy class=
"ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy"> @
<fileNamePattern>${log.dir}/${log.prefix}-%d{yyyy-MM-
dd}.%i.log.gz</fileNamePattern>
<maxFileSize>100MB</maxFileSize>
<maxHistory>20</maxHistory>
<totalSizeCap>1GB</totalSizeCap>
</rollingPolicy>
<encoder>
<pattern>%date %level %logger{1} [%thread] %msg%n</pattern> @
</encoder>
</appender>

<root level="debug">
<appender-ref ref="STDOUT" />
<appender-ref ref="FILE" />
</root>

<logger name="org.deegree" level="INF0"/> @@
</configuration>

@ defines the type of the appender
@ defines the pattern for formatting the log message

® defines the prefix of the log files, default is deegree and can be defined by a system property (or
environment variable) log.prefix

@ defines the log directory, default is logs/ and can be defined by a system property (or
environment variable) log.dir

® defines the type of the appender

® defines the file location and name

@ defines the policies when rolling over the files, triggered by size (>100MB) and time (> 1 day)
defines the format of the archived file names, when the policies are applied

© defines the pattern for formatting the log message

@© defines the logger name and threshold which are applied to all packages starting with
org.deegree

19

You will find more information about Logback configuration in the Logback documentation.

2.5.3. Providing another logging framework

It is generally recommended to use the included library for logging. As deegree builds on the
Simple Logging Facade for Java (SLF4]) (https://www.slf4j.org) it is, with specialized knowledge,
possible to replace Logback and the autoconfiguration by replacing the libraries logback-.jar and
deegree-core-logging-autoconfigure-.jar on its classpath with another SLF4] compatible logging
framework and their dependencies.

[3] Oracle JDK requires a subscription from Oracle for use in production environments. Read further in Oracle Java SE
subscription.

[4] Open]DK binaries are also provided by Azul Systems or Amazon Corretto 17.
[5] Requires an installation of Docker Community or Enterprise Edition, download Docker from www.docker.com.
[6] A Java Servlet 6.0 compliant container is required. We recommend using the latest Apache Tomcat 10.1 release.

[7]1 How to run securely Java applications we recommend to follow the Java Security Guidelines and for Apache Tomcat the
Security Manager HowTo.

20

https://logback.qos.ch/documentation.html
https://www.slf4j.org
https://www.oracle.com/java/java-se-subscription/
https://www.oracle.com/java/java-se-subscription/
https://www.azul.com/downloads/#zulu
https://aws.amazon.com/de/corretto
https://www.docker.com/
https://tomcat.apache.org/
https://docs.oracle.com/en/java/javase/17/security/index.html
https://tomcat.apache.org/tomcat-10.1-doc/security-manager-howto.html
https://tomcat.apache.org/tomcat-10.1-doc/security-manager-howto.html

Chapter 3. Getting started

In the previous chapter, you learned how to install and start deegree webservices. In this chapter,
we will introduce the deegree webservices administration console and learn how to use it to
perform basic tasks such as downloading and activating example configurations. In deegree
terminology, a complete configuration for a deegree instance is called "deegree workspace".

The following chapters describe the structure and the aspects of the deegree workspace in detail.
For the remainder of this chapter, just think of a deegree workspace as a directory of configuration
files that contains a complete configuration for a deegree webservice instance. You may have
multiple deegree workspaces on your machine, but only a single workspace can be active.

3.1. Accessing the deegree webservices administration
console

The console is a web-based administration interface for configuring your deegree webservices
installation. If deegree webservices are running on your machine, you can usually access the
administration console from your browser via http://localhost:8080/deegree-webservices

Security hint: No password has been set.

Active workspace: default(external) [Reload] [Validate]

envice console. (IMPORTANT! Set password now!)

feature.
metadata

For more information, please refer to the official documentation.

Figure 3. deegree webservices administration console

You can access the administration console from other machines on your network
(2 . . .
O by exchanging localhost with the name or IP address of the machine that runs
- .

deegree webservices.

For the remainder of the chapter, only the general section is relevant. The menu items in this
section:

» workspaces: Download and activate example configurations

* proxy: Configure network proxy settings

» password: Set a password for accessing the administration console

* module info: Display loaded deegree modules

* send requests: Send raw OGC web service requests

* see layers: Display WMS layers

21

http://localhost:8080/deegree-webservices

3.1.1. Downloading and activating example workspaces

Click the workspaces link on the left:

Security hint: No password has been set.

Active workspace: default(external) [Reload] [Validate]

Workspac

Upload workspace

Figure 4. Workspaces view

The bottom of the workspaces view lists example workspaces provided by the deegree project. You
should see the following items:

» deegree-workspace-utah: Example workspace 1: Utah Web Mapping Services

* deegree-workspace-csw: Example workspace 2: An ISO Catalogue Service setup

* deegree-workspace-wps: Example workspace 3: Web Processing Service demo

If the machine running deegree webservices uses a proxy to access the internet,

@ and you don’t see any available example configurations, you will probably have to

- configure the proxy settings. Ask your network administrator for details and use
the proxy link to setup deegree’s proxy settings.

If you click Import, the corresponding example workspace will be fetched from the artifact
repository of the deegree project and extracted in your deegree workspaces folder. Depending on
the workspace and your internet connection, this may take a while (the Utah workspace is the
largest one and about 70 MB in size).

After downloading has completed, the new workspace will be listed in section Available
workspaces:

22

Security hint: No password has been set.

Figure 5. Downloaded, but inactive workspace

You can now activate the downloaded workspace by clicking Start. Again, this may take a bit, as it
may require some initialization. The workspace will be removed from the list of inactive
workspaces and displayed next to Active workspace: (below the deegree logo). Your deegree
instance is now running the configuration that is contained in the downloaded workspace.

3.2. Example workspace 1: Utah Web Mapping Services

The Utah example workspace contains a web mapping setup based on data from the state of Utah. It
contains a WMS configuration (1.3.0 and 1.1.1) with some raster and vector layers and some nice
render styles. Raster data is read from GeoTIFF files, vector data is backed by shapefiles.
Additionally, a WFS (2.0.0, 1.1.0 and 1.0.0) is configured that allows to access the raw vector data in
GML format.

After downloading and activating the deegree-workspace-utah workspace, you may use any
compliant OGC client for accessing the WMS and WFS. Successfully tested desktop clients include
QGIS, uDig and OpenJUMP.

The service addresses to enter in your client are:

* http://localhost:8080/deegree-webservices/services/wfs
o WFS 2.0.0, 1.1.0 and 1.0.0

* http://localhost:8080/deegree-webservices/services/wms
- WMS 1.3.0and 1.1.1

 http://localhost:8080/deegree-webservices/services/wmts
o WMTS 1.0.0

Here is an example of QGIS displaying multiple WMS layers from the Utah workspace, including
county names, groundwater, energy resources, and dominant vegetation data for Utah:

23

http://localhost:8080/deegree-webservices/services/wfs
http://localhost:8080/deegree-webservices/services/wms
http://localhost:8080/deegree-webservices/services/wmts

Figure 6. QGIS displaying multiple WMS layer from the Utah workspace

The following WEFS GetFeature request retrieves all airport features available in the Utah
workspace:

curl -i -X GET \

"http://localhost:8080/deegree-
webservices/services/wfs?service=WFS&request=GetFeature&version=2.0.0&typenames=app:Ai
rports’

3.3. Example workspace 2: An ISO Catalogue Service
setup

This workspace contains a catalogue service (CSW) setup that complies to the ISO Application
Profile. After downloading and starting the workspace, you will first need to set up tables in a
PostGIS database. Ensure you have an empty, spatially-enabled PostGIS database ready for this step.

Instead of PostGIS, you can also use the workspace with an Oracle Spatial or a
@ Microsoft SQL Server database. In order to enable support for these databases, see
et Adding database modules.

After downloading and starting the workspace, some errors will be indicated (red exclamation
marks):

Security hint: No password has been set.

Active workspace: deegree-workspace-csw [Reload] [Validate]
Home Workspace management

general Working directory: /root/ deegree

Upload workspace

Figure 7. Initial startup of deegree-workspace-csw

24

Don’t worry, this is just because we’re missing the correct connection information to connect to our
database. We’re going to fix that right away. Click connections —~ databases:

Security hint: No password has been set.

‘e-csw [Reload] [Validate
Home SQL database connections

Show errors

Figure 8. JDBC connection view

Click Edit:

Security hint: No password has been set.

Active workspace: deegree-workspace-c:

Edit

Figure 9. Editing the JDBC resource configuration file

Make sure to enter the correct connection parameters and click Save. You should now have a
working connection to your database, and the exclamation mark for conn1 should disappear. Click
Reload to force a full reinitialization of the workspace:

Security hint: No password has been set.

Active workspace: deegree-workspace-csw [Reload] [Validate

Home

@ Saved configuration.

SQL datal

Figure 10. Saving the configuration and reinitializing the workspace

The indicated problems are gone now, but the required database tables still need to created.

25

Security hint: No password has been set.

Figure 11. Metadata store view

Once you set up the required database tables, you should now have a working, but empty CSW
setup. You can then connect to the CSW with compliant clients and import data.

3.4. Example workspace 3: Web Processing Service
demo

This workspace contains a WPS setup with simple example processes and example requests. It’s a
good starting point for learning the WPS protocol and the development of WPS processes. The WPS
workspace includes preconfigured example requests that can be sent to the deegree WPS after
starting the workspace.

The following DescribeProcess request retrieves details about all available processes:
curl -1 -X GET \
"http://localhost:8080/deegree-

webservices/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&ldentifier=
ALL'

Available WPS processes listed in the response of the request:

Process Identifier Description

Touches Determining whether two GML geometries touch or not.

Distance Calculating the distance between two GML geometries.

Centroid Process for finding the centroid of a GML geometry.

Union Calculates the union of two GML geometries.

ConvexHull Calculating the Convex Hull of a GML geometry.

Buffer Process for creating a buffer around a GML geometry.

Equals Determining whether two GML geometries are equal.

Intersection Determining the intersection points between two GML geometries.
Difference Calculating the geometric-difference of two GML geometries.

26

Process Identifier Description
Contains Determining whether a GML geometry contain another.

ParameterDemoProces Process for demonstrating the use of different types of input and output
S parameters.

Example usages:

Here is an example Execute request using the Buffer example process:

27

curl -i -X POST \
-H "Content-Type:application/json" \
-d \
'<?7xml version="1.0" encoding="UTF-8"7>
<wps:Execute xmlns:wps="http://www.opengis.net/wps/1.0.0"
xmlns:ows="http://www.opengis.net/ows/1.1"
xmlns:xLlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
service="WPS" version="1.0.0"
xsi:schemalocation="http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsExecute_request.xsd">
<ows:Identifier>Buffer</ows:Identifier>
<wps:Datalnputs>
<wps:Input>
<ows:Identifier>GMLInput</ows:Identifier>
<wps:Data>
<wps:ComplexData mimeType="text/xml" encoding="UTF-8">
<gml:Polygon xmlns:gml="http://www.opengis.net/gml">
<gml:exterior>
<gml:LinearRing>
<gml:posList>
10.0 10.0 20.0 10.0 20.0 20.0 10.0 20.0 10.0 10.0
</gml:poslList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</wps:ComplexData>
</wps:Data>
</wps:Input>
<wps:Input>
<ows:Identifier>BufferDistance</ows:Identifier>
<wps:Data>
<wps:LiteralData>5.0</wps:LiteralData>
</wps:Data>
</wps:Input>
</wps:Datalnputs>
<wps:ResponseForm>
<wps:RawDataOutput mimeType="text/xml">
<ows:Identifier>BufferedGeometry</ows:Identifier>
</wps:RawDatalOutput>
</wps:ResponseForm>
</wps:Execute>
"\
"http://localhost:8080/deegree-
webservices/services/wps?service=WPS&version=1.0.0&request=Execute&Identifier=Buffer’

The response is the resulting GML representation of the buffered geometry based on the provided
input geometry and buffer distance. The output will be returned as XML in the specified text/xml
format, containing the buffered geometry in the GML format:

28

<?xml version="'1.0"' encoding="UTF-8' 7>
<gml:Polygon xmlns:gml="http://www.opengis.net/gml" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.opengis.net/gml
http://schemas.opengis.net/gml/3.1.1/base/geometryAggregates.xsd">
<gml:exterior>
<gml:LinearRing>
<gml:poslList>5.000000 10.000000 5.000000 20.000000 5.096074 20.975452
5.380602 21.913417 5.842652 22.777851 6.464466 23.535534 7.222149 24.157348 8.086583
24.619398 9.024548 24.903926 10.000000 25.000000 20.000000 25.000000 20.975452
24.903926 21.913417 24.619398 22.777851 24.157348 23.535534 23.535534 24.157348
22.777851 24.619398 21.913417 24.903926 20.975452 25.000000 20.000000 25.000000
10.000000 24.903926 9.024548 24.619398 8.086583 24.157348 7.222149 23.535534 6.464466
22.777851 5.842652 21.913417 5.380602 20.975452 5.096074 20.000000 5.000000 10.000000
5.000000 9.024548 5.096074 8.086583 5.380602 7.222149 5.842652 6.464466 6.464466
5.842652 7.222149 5.380602 8.086583 5.096074 9.024548 5.000000 10.000000</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>

Besides the geometry example processes, the ParameterDemoProcess example process may be
interesting to developers who want to learn development of WPS processes with deegree
webservices. The following DescribeProcess request retrieves details about this process:

curl -i -X GET \

"http://localhost:8080/deegree-
webservices/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&ldentifier=
ParameterDemoProcess’

Response (simplified):

29

<?xml version="'1.0"' encoding="UTF-8' 7>
<wps:ProcessDescriptions xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows=
"http://www.opengis.net/ows/1.1" xmlns:ogc="http://www.opengis.net/ogc" xmlns:xlink=
"http://www.w3.0rg/1999/x1ink" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
service="WPS" version="1.0.0" xml:lang="en" xsi:schemalocation=
"http://www.opengis.net/wps/1.0.0
http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd">
<ProcessDescription wps:processVersion="1.0.0">
<ows:Identifier>ParameterDemoProcess</ows:Identifier>
<Datalnputs>
<Input><ows:Identifier>LiteralInput</ows:Identifier></Input>
<Input><ows:Identifier>BBOXInput</ows:Identifier></Input>
<Input><ows:Identifier>XMLInput</ows:Identifier></Input>
<Input><ows:Identifier>BinaryInput</ows:Identifier></Input>
</Datalnputs>
<ProcessQutputs>
<Output><ows:Identifier>LiteralOutput</ows:Identifier></Output>
<Qutput><ows:Identifier>BBOXOutput</ows:Identifier></Output>
<Output><ows:Identifier>XMLOutput</ows:Identifier></Output>
<Output><ows:Identifier>BinaryOutput</ows:Identifier></Output>
</ProcessOutputs>
</ProcessDescription>
</wps:ProcessDescriptions>

The process ParameterDemoProcess has four input parameters (literal, bounding box, xml and binary)
that are simply piped to four corresponding output parameters. There’s practically no process logic,
but the included example requests demonstrate many of the possibilities of the WPS protocol:

* Input parameter passing variants (inline vs. by reference)

* Output parameter handling (inline vs. by reference)

* Response variants (ResponseDocument vs. RawData)

 Storing of response documents

* Asynchronous execution

(r) WPS request types and their format are specified in the OGC Web Processing
- Service specification.

(r') In order to add your own processes, see Web Processing Service (WPS) and Process
- providers.

30

https://www.ogc.org/standard/wps/
https://www.ogc.org/standard/wps/

Chapter 4. Configuration basics

In the previous chapter, you learned how to access and log in to the deegree webservices
administration console and how to download and activate example workspaces. This chapter
introduces the basic concepts of deegree webservices configuration:

» The deegree workspace and the active workspace directory

» Workspace files and resources

* Workspace directories and resource types

» Resource identifiers and dependencies

Usage of the administration console for workspace configuration

The final section of this chapter describes recommended practices for creating your own
workspace. The remaining chapters of the documentation describe the individual workspace
resource formats in detail.

4.1. The deegree workspace

The deegree workspace is the modular, resource-oriented and extensible configuration concept
used by deegree webservices. The following diagram shows the different types of resources that it
contains:

/- deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS) Processes

- /

Figure 12. Configuration aspects of deegree workspaces

The following table provides a short description of the different types of workspace resources:

31

Resource type
Web Services
Data Stores (Coverage)

Data Stores (Feature)

Data Stores (Metadata)

Data Stores (Tile)

Map Layers (Layer)

Map Layers (Style)

Map Layers (Theme)
Processes

Server connections (JDBC)

Server connections (remote
OWS)

Description
Web services (WFS, WMS, WMTS, CSW, WPS)
Coverage (raster) data access (GeoTIFFs, raster pyramids, etc.)

Feature (vector) data access (Shapefiles, PostGIS, Oracle Spatial,
etc.)

Metadata record access (ISO records stored in PostGIS, Oracle, etc.)

Pre-rendered map tiles (GeoTIFF, image hierarchies in the file
system, etc.)

Map layers based on data stores and styles
Styling rules for features and coverages
Layer trees based on individual layers
Geospatial processes for the WPS
Connections to SQL databases

Connections to remote OGC web services

Physically, every configured resource corresponds to an XML configuration file in the active

workspace directory.

4.2. Dependencies of the deegree configuration files

The following diagram shows the different types of resources and their dependencies. The deegree
configuration can be divided into several sections:

e web services
e data stores
* map layers

e server connections

For example, to offer a Web Feature Service, a feature store (based on a shapefile, database, etc.)
must be configured. With a rasterfile, like a GeoTIFF, you can configure a tile store and a coverage
store to offer a Web Map Service.

32

[S019139 Memory

Shapefile

GeoTiff Pyramid

Rasterfile
CachingTileStore

Coverage

|

Filesystem

Remote WMS
Remote OWS \
Remote WMTS

Figure 13. Workspace configuration dependencies

4.3. Location of the deegree workspace directory

The active deegree workspace is part of the deegree workspace directory which stores a few global
configuration files along with the workspace. The location of this directory depends on your
operating system.

4.3.1. UNIX-like/Linux/macOS

On UNIX-like systems (Linux/macOS), deegree’s configuration files are located in folder
$HOME/.deegree/. Note that $HOME is determined by the user that started the web application
container that runs deegree. If you started the Java Servlet container as user "kelvin", then the

33

directory will be something like /home/kelvin/.deegree.

In order to use a different folder for deegree’s configuration files, you can set the
environment variable DEEGREE_WORKSPACE_ROOT, for example with export
(r') DEEGREE_WORKSPACE_R00T=/var/lib/tomcat/.deegree. When using Tomcat you can
- also set the path by defining a Java system property and appending the JAVA_OPTS
or CATALINA_OPTS environment variable with CATALINA_OPTS=-
DDEEGREE_WORKSPACE_RO0OT=/var/1lib/tomcat/.deegree.

Note that the user running the web application container must have read/write
o access to this directory! Since Debian 11 you have to grant explicitly write access to

the default home directory by setting ReadWritePaths=/var/1ib/tomcat/.deegree in

/etc/systemd/system/multi-user.target.wants/tomcat.service!

4.3.2. Windows

On a Windows operating system, deegree’s configuration files are located in folder
%USERPROFILE%/.deegree/. Note that %USERPROFILE% is determined by the user that started the
web application container that runs deegree. If you started the Java Servlet container as user
"kelvin", then the directory will be something like C:|Users|kelvin|.deegree or C:|\Documents and
Settings|kelvin|.deegree.

In order to use a different folder for deegree’s configuration files, you can set the
system environment variable DEEGREE_WORKSPACE_ROOT, for example with set
O DEEGREE_WORKSPACE_ROOT=C:\Program Files\Apache Tomcat\deegree. When using
- Tomcat you can also set the path by defining a Java system property and
appending the JAVA_OPTS or CATALINA_OPTS environment variable with
CATALINA_OPTS=-DDEEGREE_WORKSPACE_ROOT=C:\Program Files\Apache Tomcat\deegree.

o Note that the user running the web application container must have read/write
access to this directory!
4.3.3. Global configuration files and the active workspace

If you downloaded all four example workspaces (as described in Getting started), set an
administration console password and the proxy parameters, your .deegree directory will look like
this:

34

Name
> deegree-workspace-csw
g™ | deegree-workspace-inspire
g™ | deegree-workspace-utah
* deegree-workspace-wps
|=| console.pw
proxy.xml

webapps.properties
Figure 14. Example .deegree directory
As you see, this .deegree directory contains four subdirectories. Every subdirectory corresponds to a

deegree workspace. Besides the configuration files inside the workspace, three global configuration
files exist:

File name Function
<subdirectory> Workspace directory
console.pw Password for the administration console
proxy.xml Proxy settings
webapps.properties Selects the active workspace
config.apikey Contains the key to protect the REST API
o Only one single workspace can be active at a time! The information on the active
one is stored in file webapps.properties.

Usually, you don’t need to care about the three files that are located at the top level
of this directory. The administration console creates and modifies them as
(r) required (e.g. when switching to a different workspace). In order to create a
- deegree webservices setup, you will need to create or edit resource configuration
files in the active workspace directory. The remaining documentation will always
refer to files in the active workspace directory.

When multiple deegree webservices instances run on a single machine, every
(;) instance can use a different workspace. The file webapps.properties stores the
active workspace for every deegree webapp separately.

If there is no config.apikey file, one will be generated on startup with a random
(r) value. Alternatively, a value of * in config.apikey will turn off security for the REST
v API. We strongly advise against doing this in productive environments.

4.4. Structure of the deegree workspace directory

The workspace directory is a container for resource files with a well-defined directory structure.

35

When deegree starts up, the active workspace directory is determined and the following

subdirectories are scanned for XML resource configuration files:

Directory

services/
datasources/coverage/
datasources/feature/
datasources/metadata/
datasources/tile/
layers/

styles/

themes/

processes/

jdbc/
datasources/remoteows/

storedqueries/managed/

Resource type

Web services

Coverage Stores

Feature Stores

Metadata Stores

Tile Stores

Map Layers (Layer)

Map Layers (Style)

Map Layers (Theme)
Processes

Server Connections (JDBC)
Server Connections (Remote OWS)

Stored queries created via WFS interface

A workspace directory may contain additional directories to provide additional files along with the
resource configurations. The major difference is that these directories are not scanned for resource
files. Some common ones are:

Directory Used for

appschemas/ GML application schemas

data/ Datasets (GML, GeoTIFF, ...)

manager/ Example requests (for the generic client)

fonts/ Fonts

Font registration on workspace startup is not allowed by
default and has to be enabled with a parameter, see Appendix

o for details. Font files are processed only once per file and are
not deregistered when a workspace is changed, stopped or
reloaded. To remove a font, remove the font file from the
folder and restart the container.

4.4.1. Workspace files and resources

In order to clarify the relation between workspace files and resources, let’s have a look at an
example:

36

Name
v |l deegree-workspace-csw
v || datasources
v | metadata
is019115.xml
v |[idbc
conni.xml
> ||l manager

v “ services

csw.xml
main.xml

metadata.xml

Figure 15. Example workspace directory

As noted, deegree scans the well-known resource directories for XML files (*xml) on startup (note
that it will omit directory manager, as it is not a well-known resource directory). For every file
found, deegree will check the type of configuration format (by determining the name of the XML
root element). If it is a recognized format, deegree will try to create and initialize a corresponding
resource. For the example, this results in the following setup:

* A metadata store with id iso19115
* A JDBC connection pool with id conni
o A web service with id csw

The individual XML resource formats and their options are described in the later chapters of the
documentation.

You may wonder why the main.xml and metadata.xml files are not considered as
(2 . . .
O web service resource files. These two filenames are reserved and treated
- . . .

specifically. See Web services for details.

It is recommended to configure the proxy 'proxy.xml' globally and not inside the

A workspace directory. If multiple deegree instances are operated within a
container, it is impossible to configure different proxies. See Global configuration
files and the active workspace

The configuration format has to match the workspace subdirectory, e.g. metadata
@ store configuration files are only considered when they are located in
v datasources/metadata.

4.4.2. Resource identifiers and dependencies

It has already been hinted that resources have an identifier, e.g. for file jdbc/conn1.xml a JDBC
connection pool with identifier conn1 is created. You probably have guessed that the identifier is

37

derived from the file name (file name minus suffix), but you may wonder what purpose the
identifier serves. The identifier is used for wiring resources. For example, an ISO metadata store
resource requires a JDBC pool, because it provides the actual connections to the SQL database.
Therefore, the corresponding resource configuration format has an element to specify it:

Example for wiring workspace resources

<ISOMetadataStore xmlns="http://www.deegree.org/datasource/metadata/iso19115">

<!-- [1] Identifier of JDBC connection -->
<JDBCConnId>conn1</JIDBCConnId>

</ISOMetadataStore>

In this example, the ISO metadata store is wired to JDBC connection pool connl. Many deegree
resource configuration files contain such references to dependent resources. Some resources
perform auto-wiring. For example, every CSW instance needs to connect to a metadata store for
accessing stored metadata records. If the CSW configuration omits the reference to the metadata
store, it is assumed that there’s exactly one metadata store defined in the workspace and deegree
will automatically connect the CSW to this store.

(r') The required dependencies are specific to every type of resource and are
- documented for each resource configuration format.

4.4.3. Proxy configuration

The configuration format for the deegree proxy configuration is defined by schema file
https://schemas.deegree.org/core/3.6/proxy/proxy.xsd. The following table lists all available
configuration options. When specifying them, their order must be respected.

Option Cardina Value Description
lity
@overrideSystemSetti 0..1 Boole Specifies if already set proxy settings should be
ngs an overwritten
ProxyHost 0.1 Strin The hostname, or address, of the proxy server
g
HttpProxyHost 0..1 Strin The hostname, or address, of the proxy server for

g protocol HTTP

HttpsProxyHost 0.1 Strin The hostname, or address, of the proxy server for
g protocol HTTPS

FtpProxyHost 0..1 Strin The hostname, or address, of the proxy server for
g protocol FTP

38

https://schemas.deegree.org/core/3.6/proxy/proxy.xsd

Option Cardina Value Description

lity
ProxyPort 0..1 Integ The port number of the proxy server
er
HttpProxyPort 0..1 Integ The port number of the proxy server for protocol HTTP
er
HttpsProxyPort 0..1 Integ The port number of the proxy server for protocol HTTPS
er
FtpProxyPort 0..1 Integ The port number of the proxy server for protocol FTP
er
ProxyUser 0..1 Strin Username for proxy server authentication
g
HttpProxyUser 0..1 Strin Username for proxy server authentication for protocol
g HTTP
HttpsProxyUser 0..1 Strin Username for proxy server authentication for protocol
g HTTPS
FtpProxyUser 0..1 Strin Username for proxy server authentication for protocol
g FTP
ProxyPassword 0..1 Strin Password for proxy server authentication
g
HttpProxyPassword 0..1 Strin Password for proxy server authentication for protocol
g HTTP
HttpsProxyPassword 0..1 Strin Password for proxy server authentication for protocol
g HTTPS
FtpProxyPassword 0..1 Strin Password for proxy server authentication for protocol FTP
g
NonProxyHosts 0..1 Strin Indicates the hosts that should be accessed without going
g through the proxy. Multiple values can be separated by
the | character.
HttpNonProxyHosts 0..1 Strin Indicates the hosts that should be accessed without going
g through the proxy for protocol HTTP. Multiple values can
be separated by the | character.
HttpsNonProxyHosts 0..1 Strin Indicates the hosts that should be accessed without going
g through the proxy for protocol HTTPS. Multiple values can
be separated by the | character.
FtpNonProxyHosts 0..1 Strin Indicates the hosts that should be accessed without going

g through the proxy for protocol FTP. Multiple values can
be separated by the | character.

Example for a proxy setup with proxy server for HTTP and HTTPS

39

<ProxyConfiguration
xmlns="http://www.deegree.org/proxy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/proxy
https://schemas.deegree.org/core/3.6/proxy/proxy.xsd"
overrideSystemSettings="true">

<HttpProxyHost>proxy.example.com</HttpProxyHost>

<HttpsProxyHost>proxy.example.com</HttpsProxyHost>

<HttpProxyPort>3128</HttpProxyPort>

<HttpsProxyPort>3128</HttpsProxyPort>

<HttpNonProxyHosts>127.0.0.1|localhost|acme.example.com</HttpNonProxyHosts>

<HttpsNonProxyHosts>127.0.0.1|localhost |acme.example.com</HttpsNonProxyHosts>
</ProxyConfiguration>

When specifying the proxy server, this can be defined
individually per protocol or in general. It is recommended to

6 specify the proxy servers with protocol if possible and to
define the settings for HttpProxy::+ and HttpsProxy:
identically.

4.5. Using the deegree webhservices administration
console for managing resources

As an alternative to dealing with the workspace resource configuration files directly on the
filesystem, you can also use the administration console for this task. The administration console has
a corresponding menu entry for every type of workspace resource. All resource menu entries are
grouped in the lower menu on the left:

Security hint: No password has been set.

vice console. (IMPORTANT! Set password now!)

xternal servers

Figure 16. Workspace resource menu entries

Although the administration console offers additional functionality for some resource types, the
basic management of resources is always identical.

40

4.5.1. Displaying configured resources

In order to display the configured workspace resources of a certain type, click on the corresponding
menu entry. The following screenshot shows the tile store resources in deegree-workspace-utah:

Security hint: No password has been set.

Figure 17. Displaying tile store resources

The right part of the window displays a table with all configured tile store resources. In this case,
the workspace contains a single resource with identifier utah_ortho which is in status On.

4.5.2. Deactivating a resource

The Deactivate link allows to turn off a resource temporarily (while keeping the configuration):

Security hint: No password has been set.

Active workspace: deegree-workspace-utah [Reload] [Validate]

Home Tile stores

Figure 18. Deactivate action

After clicking on Deactivate, the status of the resource will be Off, and the Deactivate link will
change to Activate. Also, the Reload link at the top will turn red to notify that there may be
changes that need to be propagated to dependent resources:

41

Security hint: No password has been set.

ce-utah [Reload] [Valdate]

Home Tile stores

off u

feature.
metadata

processes

provider

Figure 19. Deactivated a resource

When a resource is being deactivated, the suffix of the corresponding
@ configuration file is changed to .ignore. Reactivating changes the suffix back to
w

.xml.

4.5.3. Editing a resource

By clicking on the Edit link, you can edit the corresponding XML configuration inside your
browser:

Security hint: No password has been set.

map layers
layers

Figure 20. Edit action

The XML configuration will be displayed:

42

Security hint: No password has been set.

processes
provider

Figure 21. Editing a resource configuration

You can now perform configuration changes in the text area and click on Save. Or click any of the
links:

* Cancel: Discards any changes.

e Validate: Perform an XML validation.

If there are no (syntactical) errors in the configuration, the Save link will take you back to the
corresponding resource view. Before actually saving the file, the administration console will
perform an XML validation of the file and display any syntactical errors:

Security hint: No password has been set.

Active workspace: deegree-workspace-utah [Reload] [Validate]

/A Error near line 10, column 11: cve-complex-type.2.4.a: Invalid content was
found starting with element '{ deegree. i

geotiff":File}'. One of {’ .deegree.

geotiff":TileMatrixSetld}' is expected.

ho

Figure 22. Displaying a syntax error

In this case, the mandatory TileMatrixSetld element was removed, which violates the
configuration schema. This needs to be corrected, before Save will actually save the file to the
workspace directory.

4.5.4. Deleting a resource

The Delete link will deactivate the resource and delete the corresponding configuration file from
the workspace:

43

Security hint: No password has been set.

e-utah [Reload] [Validate]

Figure 23. Delete action

4.5.5. Creating a new resource

In order to add a new resource, enter a new identifier in the text field, select a resource sub-type
from the drop-down and click on Create new:

Security hint: No password has been set.

Active workspace: deegree-workspace-utah [Reload] [Validate]

Home

Figure 24. Adding a WMS resource with identifier mywms

The next steps depend on the type of resource, but generally you have to choose between different
options and the result will be a new resource configuration file in the workspace.

4.5.6. Displaying error messages

One of the most helpful features of the administration console is that it can help to detect and fix
errors in a workspace setup. For example, if you delete (or deactivate) JDBC connection connl in
deegree-workspace-csw and click Reload, you will see the following:

44

Security hint: No password has been set.

processes
provider

Figure 25. Errors in resource categories

The red exclamation marks near services and metadata show that these resource categories have
resources with errors. Let’s click on the metadata link to see what’s going on:

Security hint: No password has been set.
Active workspace: deegree-workspace-csw [Reload] [Validate]

Metadata stores

tile
map layers
s

laye

ices
processes
provider

Figure 26. Resource is019115 has an error

The metadata resource view reveals that the metadata store is019115 has an error. Clicking on
Show errors leads to:

Security hint: No password has been set.

Active workspace: deegree-workspace-csw [Reload] [Validate]

(®) Initialization of resource ‘is019115' failed: Dependent resource
ConnectionProviderProvider:conni failed to initialize.

Metadata stores

data stores

tile
map layers
s

layer

provider

Figure 27. Details on the problem with is019115

The error message gives an important hint: "Initialization of resource 'iso19115' failed: Dependent
resource ConnectionProviderProvider:connl failed to initialize." deegree was unable to initialize
the metadata store because it depends on the JDBC connection pool connl, which also failed to
initialize. You may wonder what the error in the services category is about:

45

Security hint: No password has been set.
Active workspace: deegree-workspace-csw [Reload) [Validate]
® Initialization of resource 'csw' failed: Unable to build resource

o . "

:csw: There is no ensure that
exactly one store is available!

Createnew | Edit global config

Figure 28. Details on the problem with csw

As you see, the problem with the service resource ("There is no MetadataStore configured, ensure
that exactly one store is available!") is actually a consequence of the other issue. Because deegree
couldn’t initialize the metadata store, it was also unable to start up the CSW correctly. If you add a
new JDBC connection conn1 and click on Reload, both problems should disappear.

4.5.7. Resource type specific actions

In addition to the common management functionality, some resource views offer additional
actions. This is described in the corresponding chapters, but here’s a short overview:

* Web Services: Display service capabilities (Capabilities), edit service metadata (Edit metadata),
edit controller configuration (Edit global config)

 Feature Stores: Display feature types and number of stored features (Info)

4.6. Best practices for creating workspaces

This section provides some hints for creating a deegree workspace.

4.6.1. Start from example or from scratch

For creating your own workspace, you have two options. Option 1 is to use an existing workspace
as a template and adapt it to your needs. Option 2 is to start from scratch, using an empty
workspace. Adapting an existing workspace makes a lot of sense if your use-case is close to the
scenario of the workspace.

In order to create a new workspace, simply create a new directory in the .deegree directory.

46

Name

2 deegree-workspace-csw

> deegree-workspace-inspire
> deegree-workspace-utah

2 deegree-workspace-wps

myscenario|

h -| console.pw

proxy.xml

webapps.properties
Figure 29. Creating the new workspace myscenario

Afterwards, switch to the new workspace using the administration console, as described in
Downloading and activating example workspaces.

4.6.2. Find out which resources you need

The first step is to identify the types of workspace resources that you need for your use-case. You
probably know already which types of services your setup requires. The next step is to identify the
dependencies for every service by having a look at the respective chapter in the documentation.
Let’s say you want a setup with a transactional WFS, a WMS and a CSW:

* A WFS instance requires 1..n feature stores

* A WMS instance requires 1..n themes

* A CSW instance requires a single metadata store
Now you have to dig deeper: What kinds of feature stores exist? Maybe you will find out that what
you want is an SQL feature store. So you read the respective part of the documentation and see that
an SQL feature store requires a JDBC connection pool resource. Do the same research for the WMS
dependencies. A WMS depends on a theme. Find out what a theme is and what it requires. In short,
you have to answer the following questions for every encountered resource:

* What does resource do?

* How is it configured?

* On which resources does this resource depend?

At the end of this process you should know about the resources that you will have to configure for
your setup.

47

Alternatively, you can approach the resources question bottom-up. Let’s say you
have your data ready in a PostGIS database. You want to visualize it using a WMS.
So you would require a JDBC resource pool that connects to your database. You

@ need a simple SQL feature store (or an SQL feature store) that uses the new

- connection pool. You create one or more feature layers that are wired to the
feature store and a theme based on the layers. At the end of the chain is the WMS
resource which has to be configured to use the theme resource. Rendering styles
can be created later (references have to be added to the layers configuration).

4.6.3. Use a validating XML editor

All deegree XML configuration files have a corresponding XML schema, which allows to detect
syntactical errors easily. The editor built into the administration console performs validation when
you save a configuration file. If the contents is not valid according to the schema, the file will not be
saved, but an error message will be displayed:

Security hint: No password has been set.

ce-utah [Reload] [Valdate]

Error near line 10, column 11: cve-complex-type.2.4.a: Invalid content was
found starting with element '{ deegree. i

geotiff":File}. One of '{ deegree.

geotiff":TileMatrixSetld}' is expected.

tah_ortho

Figure 30. The administration console displays an XML syntax error

If you prefer to use a different editor for editing deegree’s configuration files, it is highly
recommended to choose a validating XML editor. Successfully tested editors are Eclipse and Altova
XML Spy, but any schema-aware editor should work.

In case you are able to understand XML schema, you can also use the schema file
O to find out about the available config options. deegree’s schema files are hosted at
https://schemas.deegree.org.

4.6.4. Check the resource status and error messages

As pointed out in Displaying error messages, the administration console indicates errors if
resources cannot be initialized. Here’s an example:

48

https://schemas.deegree.org

Security hint: No password has been set.

Active workspace: deegree-workspace-csw [Reload] [Validate]

® Initialization of resource 'is019115' failed: Dependent resource
ConnectionProviderProvider:conni failed to initialize.

Metadata stores

web services 1 isol9115 Show errors

Figure 31. Error message

In this case, it was not possible to initialize the JDBC connection (and the resources that depend on
it). You can spot resource categories and resources that have errors easily, as they have a red
exclamation mark. Click on the respective resource level and on Errors near the broken resource
to see the error message. After fixing the error, click on Reload to re-initialize the workspace. If
your fix was successful, the exclamation mark will be gone.

Additional information can be found in the log output of the Java Servlet container. When
initializing workspace resources, information on every resource will be logged, along with error
messages.

Figure 32. Log messages in the log output of the Java Servlet container, here an example taken from Apache
Tomcat

(r') The location of the file deegree.log depends on the configuration of the logging
- framework. For Tomcat, you will find it in the logs/ directory.

More logging can be activated by adjusting file log4j2.properties in the /WEB-
@ INF/classes/ directory of the deegree web application. See chapter Logging
configuration for more information how to configure the logging framework.

49

Chapter 5. Web services

This chapter describes the configuration of web service resources. You can access this configuration
level by clicking the web services link in the administration console. The corresponding
configuration files are located in the services/ subdirectory of the active deegree workspace
directory.

/_ deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS)

- /

Figure 33. Web services are the top-level resources of the deegree workspace

Processes

The identifier of a web service resource has a special purpose. If your deegree
instance can be reached at http:/localhost:8080/deegree-webservices, the common
endpoint for connecting to your services is http:/localhost:8080/deegree-
webservices/services. However, if you define multiple service resources of the same

@ type in your workspace (e.g. two WMS instances with identifiers wms1 and wms2),
you cannot use the common URL, as deegree cannot determine the targeted WMS
instance from the request. In this case, simply append the resource identifier to
the common endpoint URL (e.g. http:/localhost:8080/deegree-webservices/services/
wmsZ2) to choose the service resource that you want to connect to explicitly.

5.1. Web Feature Service (WFS)

A deegree WFS setup consists of a WFS configuration file and any number of feature store
configuration files. Feature stores provide access to the actual data (which may be stored in any of
the supported backends, e.g. in shapefiles or spatial databases such as PostGIS or Oracle Spatial). In
transactional mode (WFS-T), feature stores are also used for modification of stored features:

50

http://localhost:8080/deegree-webservices
http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services/wms2
http://localhost:8080/deegree-webservices/services/wms2

/— deegree workspace \

| |

\ 4 Y Y
Feature Store 1 Feature Store 2 Feature Store n

. /)

Figure 34. A WFS resource is connected to any number of feature store resources

5.1.1. Minimal example

The only mandatory option is QueryCRS, therefore, a minimal WFS configuration example looks
like this:

WES config example 1: Minimal configuration
<deegreelWFS
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/services/wfs
https://schemas.deegree.org/core/3.6/services/wfs/wfs_configuration.xsd">

<QueryCRS>urn:ogc:def:crs:EPSG: :4258</QueryCRS>

</deegreelFS>

This will create a deegree WFS with the feature types from all configured feature stores in the
workspace and urn:ogc:def:crs:EPSG::4258 as coordinate system for returned GML geometries.

5.1.2. More complex example
A more complex configuration example looks like this:

WES config example 2: More complex configuration

<deegreelWFS
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wfs
https://schemas.deegree.org/core/3.6/services/wfs/wfs_configuration.xsd">

<SupportedVersions>

<Version>2.0.0</Version>
<Version>1.1.0</Version>

31

</SupportedVersions>

<SupportedRequests>
<SupportedEncodings>kvp</SupportedEncodings>
<GetCapabilities>
<SupportedEncodings>xml soap</SupportedEncodings>
</GetCapabilities>
<DescribeFeatureType/>
<GetFeature>
<SupportedEncodings>xml</SupportedEncodings>
</GetFeature>
</SupportedRequests>

<FeatureStoreld>inspire-ad</FeatureStoreld>

<EnableTransactions idGen="UseExisting">true</EnableTransactions>
<EnableResponseBuffering>false</EnableResponseBuffering>
<DisabledResources>

<Pattern>http://inspire.ec.europa.eu/codelist</Pattern>
</DisabledResources>

<QueryCRS>urn:ogc:def:crs:EPSG: :4258</QueryCRS>
<QueryCRS>urn:ogc:def:crs:EPSG::4326</QueryCRS>
<QueryMaxFeatures>-1</QueryMaxFeatures>

<QueryCheckAreaOfUse>false</QueryCheckAreaOfUse>

<GMLFormat gmlVersion="GML_32">
<MimeType>application/gml+xml; version=3.2</MimeType>
<MimeType>text/xml; subtype=gml/3.2.1</MimeType>
<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>
<GetFeatureResponse xmlns:gml="http://www.opengis.net/gml/3.2">
<ContainerElement>gml:FeatureCollection</ContainerElement>
<FeatureMemberElement>gml: featureMember</FeatureMemberElement>
<AdditionalSchemalocation>http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemalocation>
<DisableStreaming>false</DisableStreaming>
<PrebindNamespace prefix="ad" uri="urn:x-
inspire:specification:gmlas:Addresses:3.0"/>
<PrebindNamespace prefix="base" uri="urn:x-
inspire:specification:gmlas:BaseTypes:3.2"/>
<PrebindNamespace prefix="xlink" uri="http://www.w3.0rg/1999/x1ink"/>
</GetFeatureResponse>
</GMLFormat>

</deegreeWFS>

5.1.3. Configuration overview

The deegree WFS config file format is defined by schema file https://schemas.deegree.org/core/3.6/

32

https://schemas.deegree.org/core/3.6/services/wfs/wfs_configuration.xsd

services/wfs/wfs_configuration.xsd. The root element is deegreeWFS. The following table lists all
available configuration options (complex ones contain nested options themselves). When specifying
them, their order must be respected.

Option
SupportedVersions

FeatureStoreld

EnableTransactions
EnableResponseBuffer
ing

DisabledResources
EnableResponsePagin
g

SupportedRequests

QueryCRS

QueryMaxFeatures
ResolveTimeOutInSec
onds

QueryCheckAreaOfUse

StoredQuery

ExtendedCapabilities
DefaultFormats
GMLFormat
Geo]SONFormat
CSVFormat

CustomFormat

Cardinal
ity
0.1

e
5

e
—_

e
—_

e
5

Value

Compl
ex

String

Compl
ex

Boolea
n

Compl
ex

Boolea
n

Compl
ex

String

Intege
r

Intege
r

Boolea
n

String

String

Compl
ex

Compl
ex

Compl
ex

Compl
ex

Compl
ex

Description

Activated OGC protocol versions, default: all

Feature stores to attach, default: all

Enable transactions (WFS-T operations), default: false
Enable response buffering (expensive), default: false
Disables resolve of xlink:href attribute references
Enable response paging (WFS 2.0.0 option), default:
false

Configuration of WFS requests

Announced CRS, first element is the default CRS

Limit of features returned in a response, default: 15000
Expiry time in seconds

Check spatial query constraints against CRS area,
default: false

File name of StoredQueryDefinition

Extended Metadata reported in GetCapabilities
response

Default format configuration

GML format configuration

Geo]SON format configuration

CSV format configuration

Custom format configuration

33

https://schemas.deegree.org/core/3.6/services/wfs/wfs_configuration.xsd

Option Cardinal Value Description

ity

Strict 0..1 Boolea Indicates if the server should behave strictly as

n specified. default: false

The remaining sections describe these options and their sub-options in detail.

5.1.4. General options

» SupportedVersions: By default, all implemented WFES protocol versions (1.0.0, 1.1.0 and 2.0.0) will

be activated. You can control offered WFS protocol versions using element SupportedVersions.
This element allows any combination of the child elements <Version>1.0.0</Version>,
<Version>1.1.0</Version> and <Version>2.0.0</Version>.

» FeatureStoreld: By default, all feature stores in your deegree workspace will be used for serving

feature types. In some cases, this may not be what you want, e.g. because you have two different
WES instances running, or you don’t want all feature types used in your WMS for rendering to
be available via your WES. Use the FeatureStoreld option to explicitly set the feature stores that
this WEFS should use.

* EnableResponseBuffering: By default, WFS responses are directly streamed to the client. This is

very much recommended and even a requirement for transferring large responses efficiently.
The only drawback happens if exceptions occur, after a partial response has already been
transferred. In this case, the client will receive part payload and part exception report. By
specifying true here, you can explicitly force buffering of the full response, before it is written to
the client. Only if the full response could be generated successfully, it will be transferred. If an
exception happens at any time the buffer will be discarded, and an exception report will be sent
to the client. Buffering is performed in memory, but switches to a temp file in case the buffer
grows bigger than 1 MiB.

* DisabledResources: By default all xlink:href attribute references are tried to be resolved as

feature references during insert. This can be avoided by configuring one or multiple base url
patterns within the child element Pattern. Pattern can occur multiple times, one for each base
url. In the complex example above resolving of https:/inspire.ec.europa.eu/codelist/
DesignationSchemeValue/natura2000 and https.//inspire.ec.europa.eu/codelist/
Natura2000DesignationValue/specialProtectionArea is disabled, but not
https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000 and http.//deegree.org/
external/feature.

* EnableResponsePaging: By default, WFS 2.0.0 does not support response paging. By specifying

54

true here, you can explicitly enable response paging. Response Paging works only when
streaming is disabled. Currently, @next and @previous URLs bases on the original GetFeature
request in KVP encoding.

QueryCRS: Coordinate reference systems for returned geometries. This element can be specified
multiple times, and the WFS will announce all CRS in the GetCapabilities response (except for
WES 1.0.0 which does not officially support using multiple coordinate reference systems). The
first element always specifies the default CRS (used when no CRS parameter is present in a
request).

QueryMaxFeatures: By default, a maximum number of 15000 features will be returned for a

https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
https://inspire.ec.europa.eu/codelist/Natura2000DesignationValue/specialProtectionArea
https://inspire.ec.europa.eu/codelist/Natura2000DesignationValue/specialProtectionArea
https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
http://deegree.org/external/feature
http://deegree.org/external/feature

single GetFeature request. Use this option to override this setting. A value of -1 means unlimited.

* ResolveTimeOutInSeconds: Use this option to specify a default value for ResolveTimeOut, used in
GetFeature request if the ResolveTimeOut option is not set.

* QueryCheckAreaOfUse: By default, spatial query constraints are not checked with regard to the
area of validity of the CRS. Set this option to true to enforce this check.

5.1.5. Transactions

By default, WFS-T requests will be rejected. Setting the EnableTransactions option to true will
enable transaction support. This option has the optional attribute idGenMode which controls how
ids of inserted features (the values in the gml:id attribute) are treated. There are three id generation
modes available:

» UseExisting: The original gml:id values from the input are stored. This may lead to errors if the
provided ids are already in use.

» UseExistingResolvingReferencesInternally: Same as UseExisting, but it is allowed to insert
features with references to already inserted features.

» UseExistingSkipResolvingReferences: Same as UseExisting, but references to features are not
checked. The user is fully responsible for the data integrity!

* GenerateNew (default): New and unique ids are generated. References in the input GML
(xlink:href) that point to a feature with a reassigned id are fixed as well, so reference
consistency is maintained.

* ReplaceDuplicate: The WFS will try to use the original gml:id values that have been provided
in the input. In case a certain identifier already exists in the backend, a new and unique
identifier will be generated. References in the input GML (xlink:href) that point to a feature
with a reassigned id are fixed as well, so reference consistency is maintained.

Furthermore, the option EnableTransactions has the optional attribute checkAreaOfUse which is
false by default. This means that it is not checked if the geometries in a transaction request are in
the valid area of the CRS. The check can be activated by setting the attribute to true.

o Currently, transactions can only be enabled if your WFS is attached to a single
feature store.

Not every feature store implementation supports transactions, so you may
encounter that transactions are rejected, even though you activated them in the
WES configuration.

implementation/configuration.

In a WFS 1.1.0 insert, the id generation mode can be overridden by attribute
idGenMode of the Insert element. WFS 1.0.0 and WFS 2.0.0 don’t support to specify
the id generation mode on a request basis.

o The details of the 1id generation depend on the feature store

55

When a feature is replaced the UseExisting option is always activated for that
transaction. The gml:id of the feature is used for the new version of the feature.
The filter is used to identify the feature to be replaced.

5.1.6. SupportedRequests

This option can be used to configure the supported request types. Currently, the supported
encodings can be specified for each request type. If the option is missing all encodings are
supported for each request type. The option has the following sup-options:

Option Cardi Val Description
nalit ue
y

SupportedE 0.1 Stri Enable encodings for all configured request types. Allowed values: 'kvp',
ncodings ng 'xml), 'soap'. Multiple values must be separated by a white space.
GetCapabilit O.. Co Configuration of GetCapabilities requests
ies mpl

ex
DescribeFea O.. Co Configuration of DescribeFeatureType requests
tureType mpl

ex
GetFeature O.. Co Configuration of GetFeature requests

mpl

ex
Transaction O.. Co Configuration of Transaction requests

mpl

ex
GetFeature O.. Co Configuration of GetFeatureWithLock requests
WithLock mpl

ex
GetGmlObje O.. Co Configuration of GetGmlObject requests
ct mpl

ex
LockFeature O.. Co Configuration of LockFeature requests

mpl

ex
GetProperty O.. Co Configuration of GetPropertyValue requests
Value mpl

ex

CreateStored O..

Query

36

Co Configuration of CreateStoredQuery requests
mpl
ex

Option Cardi Val Description

nalit ue
y
DropStored 0.1 Co Configuration of DropStoredQuery requests
Query mpl
ex

ListStoredQ 0.1 Co Configuration of ListStoredQueries requests
ueries mpl
ex

DescribeStor 0.1 Co Configuration of DescribeStoredQueries requests
edQueries mpl
ex

Each request type has the following sup-option:

Option Cardi Val Description
nality ue

SupportedE 0..1 Stri Enable encodings for this request types. Allowed values: 'kvp', 'xml',
ncodings ng ‘'soap'. Multiple values must be separated by a white space.

By default, deegree will provide all supported request types with all available encodings (kvp, xml,
soap).

If a single supported request or encoding is configured, all non-configured requests or encodings
are disabled.

Example: To limit the provided request types to GetCapabilities and GetFeature this request types
can be added without SupportedEncodings sub-option:

<SupportedRequests>
<GetCapabilities />
<GetFeature />

</SupportedRequests>

Example: To disable SOAP encoding the other encodings can be added without SupportedRequests
sub-option:

<SupportedRequests>
<SupportedEncodings>kvp xml</SupportedEncodings>
</SupportedRequests>

A It is not checked if the configuration is valid against the WFS specification!

57

5.1.7. Output formats and defaults

By default, a deegree WFS will offer GML 2, 3.0, 3.1, 3.2, GeoJSON and CSV as output formats and
announce those formats in the GetCapabilities responses (except for WES 1.0.0, as this version of
the standard has no means of announcing other formats than GML 2).

o If custom format configurations are present and DefaultFormats is not, the default
formats will be omitted.

To ease configuration, it is also possible to add custom format configurations in addition to the
default or a subset of the default ones.

The DefaultFormats option has the following sub-options:

Option Cardinal Value Description
ity
ExcludeMimeType 0.n Strin Mime types or pattern to exclude.
g

Example of using the defaults, except the CSV and GeoJSON

<DefaultFormats>
<ExcludeMimeType>application/geo+json</ExcludeMimeType>
<ExcludeMimeType>*csv*</ExcludeMimeType>
</DefaultFormats>

The exclusions are defined by specifying one or more mime types or patterns.
o Simple placeholders like ? for a single character or * for several characters can be
used.

5.1.8. Adapting GML output formats

In some cases, you may want to alter aspects of the offered output formats. For example, if you
want your WFS to serve a specific application schema (e.g. INSPIRE Data Themes), you should
restrict the announced GML versions to the one used for the application schema. These and other
output-format related aspects can be controlled by element GMLFormat.

Example for WFS config option GMLFormat

38

<GMLFormat gmlVersion="GML_32">
<MimeType>text/xml; subtype=gml/3.2.1</MimeType>
<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>

<GetFeatureResponse>
<ContainerElement xmlns:gml="http://www.opengis.net/gml/3.2">
gml:FeatureCollection</ContainerElement>
<FeatureMemberElement xmlns:gml="http://www.opengis.net/gml/3.2">
gml:featureMember</FeatureMemberElement>
<AdditionalSchemalocation>
http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemalocation>
<DisableDynamicSchema>true</DisableDynamicSchema>
<Schemalocation>../appschema/originalGmlSchema.xsd</SchemalLocation>
<DisableStreaming>false</DisableStreaming>
<GeometryLinearization>
<Accuracy>0.1</Accuracy>
</GeometrylLinearization>
</GetFeatureResponse>

<DecimalCoordinateFormatter places="8"/>

</GMLFormat>

The GMLFormat option has the following sub-options:

Option Cardinal Value Description
ity
@gmlVersion 1.1 Strin GML version (GML_2, GML_30, GML_31 or GML_32)
g
MimeType 1.n Strin Mime types associated with this format configuration
g
GenerateBoundedByF 0..1 Boole Forces output of gml:boundedBy property for every
orFeatures an feature
GetFeatureResponse 0..1 Comp Options for controlling GetFeature responses
lex
DecimalCoordinateFor 0..1 Comp Controls the formatting of geometry coordinates
matter/ lex
CustomCoordinateFor
matter
GeometryLinearizatio 0..1 Comp Activates/controls the linearization of exported
n lex geometries

39

Basic GML format options

* @gmlVersion: This attribute defines the GML version (GML_2, GML_30, GML_31 or GML_32)

* MimeType: Mime types associated with this format configuration (and announced in

GetCapabilities)

* GenerateBoundedByForFeatures: By default, the gml:boundedBy property will only be exported

for the member features if the feature store provides it. By setting this option to true, the WFS
will calculate the envelope and include it as a gml:boundedBy property. Please note that this
setting does not affect the inclusion of the gml:boundedBy property for on the feature collection
level (see DisableStreaming for that).

GetFeature response settings

Option GetFeatureResponse has the following sub-options:

Option Cardinal Value Description
ity
ContainerElement 0..1 QName Qualified root element name, default:

wifs:FeatureCollection

FeatureMemberEle 0..1 QName Qualified feature member element name, default:

ment gml:featureMember

AdditionalSchemaL 0..1 String Added to xsi:schemaLocation attribute of

ocation wifs:FeatureCollection

DisableDynamicSch 0..1 Comple Controls DescribeFeatureType strategy, default:

ema X regenerate schema

SchemaLocation 0..1 Comple Location of the GML application schema for this GML
X version

DisableStreaming 0..1 Boolea Disables output streaming, include numberOfFeature
n information/gml:boundedBy

PrebindNamespace 0..n Comple Pre-bind namespaces in the root element
X

* ContainerElement: By default, the container element of a GetFeature response is

wfs:FeatureCollection. Using this option, you can specify an alternative element name. In order
to bind the namespace prefix, use standard XML namespace mechanisms (xmlns attribute). This
option is ignored for WFS 2.0.0.

» FeatureMemberElement: By default, the member features are included in gml:featureMember

(WES 1.0.0/1.1.0) or wfs:member elements (WFS 2.0.0). Using this option, you can specify an
alternative element name. In order to bind the namespace prefix, use standard XML namespace
mechanisms (xmlns attribute). This option is ignored for WFS 2.0.0.

» AdditionalSchemaLocation: By default, the xsi:schemaLocation attribute in a GetFeature

60

response is auto-generated and refers to all schemas necessary for validation of the response.
Using this option, you can add additional namespace/URL pairs for adding additional schemas.
This may be required when you override the returned container or feature member elements in

order to achieve schema-valid output.

* DisableDynamicSchema: By default, the GML application schema returned in
DescribeFeatureType responses (and referenced in the xsi:schemaLocation of query responses)
will be generated dynamically from the internal feature type representation. This allows
generation of application schemas for different GML versions and is fine for simple feature
models (e.g. feature types served from shapefiles or flat database tables). However, valid re-
encoding of complex GML application schema (such as INSPIRE Data Themes) is technically not
feasible. In these cases, you will have to set this option to true, so the WFS will produce a
response that refers to the original schema files used for configuring the feature store. If you
want the references to point to an external copy of your GML application schema files (instead
of pointing back to the deegree WFS), use the optional attribute baseURL that this element
provides.

* SchemaLocation: By default, the GML application schema returned in DescribeFeatureType
responses (and referenced in the xsi:schemaLocation of GetFeature responses) will be generated
dynamically from the internal feature type representation or, if DisableDynamicSchema is set
to true, the original schema files used for configuring the feature store is used. If your service
supports multiple GML version it may be useful to configure the GML application schema for
each version differently. Use SchemaLocation to configure the original GML application schema
for this GML version. To enable this option DisableDynamicSchema must be true.

* DisableStreaming: By default, returned features are not collected in memory, but directly
streamed from the backend (e.g. an SQL database) and individually encoded as GML. This
enables the querying of huge numbers of features with only minimal memory footprint.
However, by using this strategy, the number of features and their bounding box is not known
when the WFS starts to write out the response. Therefore, this information is omitted from the
response (which is perfectly valid according to WFS 1.0.0 and 1.1.0, and a change request for
WES 2.0.0 has been accepted). If you find that your WES client has problems with the response,
you may set this option to false. Features will be collected in memory first and the generated
response will include numberOfFeature information and gml:boundedBy for the collection.
However, for huge response and heavy server load, this is not recommended as it introduces
significant overhead and may result in out-of-memory errors.

* PrebindNamespace: By default, XML namespaces are bound when they are needed. This will
result in valid output, but may lead to the same namespace being bound again and again in
different parts of the response document. Using this option, namespaces can be bound in the
root element, so they are defined for the full scope of the response document and do not need
re-definition at several positions in the document. This option has the required attributes prefix
and uri.

PrebindNamespaces must be configured as in used GML application schemas
respectively the imported features (at least for the BLOB mode). It is essential to

0 ensure that prefixes are bound to the same namespace URIs. Otherwise, a
GetFeature request may result in a failure ("Duplicate declaration for namespace
prefix").

61

SchemalLocation can be used in addition to the referenced GML application schema
@ in the feature store. It is not required to configure a schema twice. E.g. if in the
- feature store the GML application schema for GML 3.2 is referenced,

SchemalLocation must be configured only for GML 3.1 not for GML 3.2.

Coordinate formatters

By default, GML geometries will be encoded using 6 decimal places for CRS with degree axes and 3
places for CRS with metric axes. In order to override this, two options are available:

* DecimalCoordinatesFormatter: Empty element, attribute places specifies the number of decimal
places.

* CustomCoordinateFormatter: By specifying this element, an implementation of Java interface
org.deegree.geometry.io.CoordinateFormatter can be instantiated. Child element jJavaClass
contains the qualified name of the Java class (which must be on the classpath).

Geometry linearization

Some feature stores (e.g. the SQL feature store when connected to an Oracle Spatial database) can
deliver non-linear geometries (e.g. arcs). Here’s an example for the GML 3.1.1 encoding of such a
geometry as it would be returned by the WFS:

Example for a non-linear GML geometry

<gml:Polygon srsName="urn:ogc:def:crs:EPSG::28992">
<gml:exterior>
<gml:Ring srsName="urn:ogc:def:crs:EPSG::28992">
<gml:curveMember>
<gml:Curve srsName="urn:ogc:def:crs:EPSG::28992">
<gml:segments>
<gml:Arc>
<gml:poslList>240190.182 438008.760 240160.182 487978.760 240190.182

487948.760</gml:posList>

</gml:Arc>

<gml:Arc>

<gml:poslList>240190.182 487948.760 240220.182 487978.760 240190.182

488008.760</gml:posList>

</gml:Arc>

</gml:segments>
</gml:Curve>
</gml:curveMember>
</gml:Ring>
</gml:exterior>

</gml:Polygon>

This is perfectly valid GML, but there are two reasons why you may not want your WES to return

62

non-linear GML geometries:

* There’s no encoding for non-linear GML geometries in GML version 2
* Currently available WFS clients (e.g. QGIS, uDig, ...) cannot cope with them
Option GeometryLinearization will ensure that GML responses will only contain linear geometries.

Curves with non-linear segments and surfaces with non-linear boundary segments will be
converted before they are encoded to GML. Here’s an example usage of this GML format option:

Example config snippet for activating geometry linearization

<GeometrylLinearization>
<Accuracy>0.1</Accuracy>
</GeometrylLinearization>

GeometryLinearization has a single mandatory option Accuracy. It defines the numerical accuracy
of the linear approximation in units of the coordinate reference system used by the feature store. If
the coordinate reference system is based on meters, a value of 0.1 will ensure that the maximum
error between the original and the linearized geometry does not exceed 10 centimeters.

Here’s an example of a linearized version of the example geometry as it would be generated by the
WES:

Example for linearized GML output

63

<gml:Polygon srsName="urn:ogc:def:crs:EPSG::28992">
<gml:exterior>
<gml:Ring srsName="urn:ogc:def:crs:EPSG::28992">
<gml:curveMember>
<gml:Curve srsName="urn:ogc:def:crs:EPSG::28992">
<gml:segments>
<gml:LineStringSegment interpolation="linear">
<gml:poslList>240190.182 438008.760 240177.165 488005.789 240166.727
487997.465 240160.934 487985.436 240160.934 487972.084 240166.727 487960.055
240177.165 487951.731 240190.182 487948.760</gml:posList>
</gml:LineStringSegment>
<gml:LineStringSegment interpolation="linear">
<gml:posList>240190.182 487948.760 240203.199 487951.731 240213.637
487960.055 240219.430 487972.084 240219.430 487985.436 240213.637 487997.465
240203.199 488005.789 240190.182 488008.760</gml:posList>
</gml:LineStringSegment>
</gml:segments>
</gml:Curve>
</gml:curveMember>
</gml:Ring>
</gml:exterior>
</gml:Polygon>

5.1.9. Adding GeoJSON output formats

Using option element GeoJSONFormat, it is possible to enable GeoJSON as GetFeature output format.
The GeoJSONFormat option has the following sub-options:

Option Cardinality Value Description

@allowOther 0..1 Boolean Geo]JSON only allows geometries in WGS84. With this
CrsThanWGS option the default behaviour of a WFS can be enabled: the
84 CRS of the requested geometries are written in the

requested CRS of the DefaultCRS of the WFS. Default: false

MimeType 1.n String Mime types associated with this format configuration

Example for GeoJSON output format

<6eoJSONFormat>
<MimeType>application/geo+json</MimeType>
</GeoJSONFormat>

A GeoJSON output format is currently only implemented for GetFeature requests!

64

5.1.10. Adding CSV output formats

Using option element CsvFormat, it is possible to enable CSV as GetFeature output format.

The CsvFormat option has the following sub-options:

Option

@encoding

@columnHeaders

@quoteCharacter

@escape

@delimiter

@instanceSeparator

@recordSeparator

@geometries

MimeType

ExtraColumns

Cardinal Value Description

ity
0.1

Strin
g

Strin
g

Strin
8
Strin
g
Strin
8

Strin
g
Strin
8

Boole
an

Strin
g

Comp
lex

Character encoding, e.g. UTF-8 to use instead of the
default of the Java Servlet container.

Defines how headers are derived from property name.
Allowed values: auto, short, prefixed, long. Defaults to
auto which chooses the shortest unique header name list
built from long namespace with local part, prefixed
prefix with local part, or short only the local part of the
property name.

Single character to be used as delimiter in output.
Defaults to comma (,).

Single sign to be used as delimiter in output.

Single sign to be used as escape character. Default to
double quote (")

Text used when the property with multiple instances is
joined. Defaults to the pipe sign with spaces around (|).

Text to be used between records. Defaults to carriage
return with line feed (\r\n).

Defines if geometry columns should be included or not.
Enabled by default.

Mime types associated with this format configuration

Defines if additional columns should be added to the
output.

The ExtraColumns option has the following sub-options:

Identifier

0.1

CoordinateReferenceS 0..1

ystem

Example for CSV output format

Strin
g

Strin
g

Name of the column to output the GML identifier. An
empty value will omit this column, which is the
default.

Name of the column to output the coordinate reference
system name. Defaults to CRS if ExtraColumns is not set.

65

<CsvFormat>
<MimeType>text/csv</MimeType>
</CsvFormat>

Example for a complex CSV output format

n,n

<CsvFormat columnHeaders="prefixed" delimiter=";" >
<ExtraColumns>
<Identifier>FID</Identifier>
<CoordinateReferenceSystem />
</ExtraColumns>
<MimeType>text/csv; subtype=semicolon</MimeType>
</CsvFormat>

CSV output format is currently only implemented for

A GetFeature requests with exactly one typename! Complex
attributes as well as attributes are currently not included in
the response.

5.1.11. Adding custom output formats

Using option element CustomFormat, it is possible to plug-in your own Java classes to generate the
output for a specific mime type (e.g. a binary format)

Option Cardinality Value Description

MimeType 1.n String Mime types associated with this format configuration
JavaClass 1.1 String Qualified Java class name

Config 0.1 Complex Value to add to xsi:schemaLocation attribute

* MimeType: Mime types associated with this format configuration (and announced in
GetCapabilities)

* JavaClass: Therefore, an implementation of interface
org.deegree.services.wfs.format.CustomFormat must be present on the classpath.

* Config:

5.1.12. Stored queries

Besides standard (‘ad hoc') queries, WFS 2.0.0 introduces so-called stored queries. When WFS 2.0.0
support is activated, your WFS will automatically support the well-known stored query

66

urn:ogc:def:storedQuery:OGC-WFS::GetFeatureByld (defined in the WFS 2.0.0 specification). It can be
used to query a feature instance by specifying its gml:id (similar to GetGmlObject requests in WFS
1.1.0). In order to define custom stored queries, use the StoredQuery element to specify the file
name of a StoredQueryDefinition file. The given file name (can be relative) must point to a valid
WES 2.0.0 StoredQueryDefinition file. Here’s an example:

Example for a WFS 2.0.0 StoredQueryDefinition file

<StoredQueryDefinition id="urn:x-inspire:query:GetAddressesForStreet"
xmlns="http://www.opengis.net/wfs/2.0"
xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0"
xmlns:gn="urn:x-inspire:specification:gmlas:GeographicalNames:3.0">
<Title>GetAddressesForStreet</Title>
<Abstract>Returns the ad:Address features located in the specified
street.</Abstract>
<Parameter name="streetName" type="xs:string">
<Abstract>Name of the street (mandatory)</Abstract>
</Parameter>
<QueryExpressionText returnFeatureTypes="ad:Address"
language="urn:ogc:def:queryLanguage:0GC-:WFSQueryExpression">
<Query srsName="${srsName}" typeNames="ad:Address">
<Filter xmlns="http://www.opengis.net/fes/2.0">
<PropertyIsEqualTo>
<ValueReference>
ad:component/ad:ThoroughfareName/ad:name/gn:GeographicalName/gn:spelling/gn:SpellingOf
Name/gn: text
</ValueReference>
<Literal>${streetName}</Literal>
</PropertyIskqualTo>
</Filter>
</Query>
</QueryExpressionText>
</StoredQueryDefinition>

This example is actually usable if your WES is set up to serve the ad:Address feature type from
INSPIRE Annex I. It defines the stored query urn:x-inspire:storedQuery:GetAddressesForStreet for
retrieving ad:Address features that are located in the specified street. The street name is passed
using parameter streetName. If your WES instance can be reached at http:/localhost:8080/deegree-
webservices/services, you could use the request http.//localhost:8080/deegree-webservices/services?
request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&
streetName=Madame%Z20Curiestraat to fetch the ad:Address features in street Madame Curiestraat.

The attribute returnFeatureTypes of QueryExpressionText can be left empty. If this is the case, the
element will be filled with all feature types served by the WFS when executing a
DescribeStoredQueries request. The same applies for the value $\{deegreewfs:ServedFeatureTypes}.
If a value is set for returnFeatureTypes, the user is responsible to configure it as expected: Usually
values of the typeNames of the Query-Elements should be used. An exception is thrown as
DescribeStoredQueries response, if the configured feature type is not served by the WEFS.

67

http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat
http://localhost:8080/deegree-webservices/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat
http://localhost:8080/deegree-webservices/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat

The optional attribute srsName="${srsName}" can be set to support the parameter srsName in the
GetFeature request to determine the CRS of the returned geometries. If the parameter is missing in
the request, the default CRS of the WFS is returned.

To enable support for the Manage Stored Queries conformance class for WFS 2.0.0 it is required to
create a directory storedqueries/managed in your workspace. The stored queries created with
CreateStoredQuery requests are stored in this directory. They are loaded during startup of deegree
automatically. It is not recommend to put the StoredQueries configured in the WFS configuration
with the StoredQuery element into this folder. If the directory is missing the CreateStoredQuery
request returns an exception.

deegree WFS supports the execution of stored queries using GetFeature and
O GetPropertyValue requests. It also implements the ListStoredQueries,
et DescribeStoredQueries, CreateStoredQuery and the DropStoredQuery operations.

5.1.13. Extended capabilities

Important for applications like INSPIRE, it is often desirable to include predefined blocks of XML in
the extended capabilities section of the WFS capabilities output. This can be achieved simply by
adding these blocks to the extended capabilities element of the configuration:

<ExtendedCapabilities>
<MyCustomOutput xmlns="http://www.custom.org/output">

</MyCustomOutput>
</ExtendedCapabilities>

You must set the attribute wfsVersions to indicate the version that you want to define the extended
capabilities for. If your service supports multiple protocol versions (e.g. a WFS that supports 1.1.0
and 2.0.0), you may include multiple ExtendedCapabilities elements in the metadata configuration.

The extended capabilities set in the WFS service configuration are ignored, if a
metadata configuration file (see chapter Metadata) exists. Instead, the extended
capabilities must be configured there.

5.1.14. Special Features

The GetFeature operation allows to specify the properties to be included in the response by the
element PropertyName, e.g. (WES 2.0.0):

<Query typeNames="gn:Endonym">
<PropertyName>app:title</PropertyName>
<PropertyName resolveDepth="*">app:country</PropertyName>

68

As extension of the WFS 1.1.0 and 2.0.0 specification, deegree supports XPath expressions as value:

<Query typeNames="gn:Endonym">
<PropertyName>app:title</PropertyName>
<PropertyName resolveDepth="*">app:country/app:Country/app:name</PropertyName>

This is limited to simple XPath expressions where each step is a qualified name.

5.2. Web Map Service (WMS)

In deegree terminology, a deegree WMS renders maps from data stored in feature, coverage and
tile stores. The WMS is configured using a layer structure, called a theme. A theme can be thought of
as a collection of layers, organized in a tree structure. What the layers show is configured in a layer
configuration, and how it is shown is configured in a style file. Supported style languages are
StyledLayerDescriptor (SLD) and Symbology Encoding (SE).

WMS

Theme 1 Theme 2 Theme n

Figure 35. A WMS resource is connected to exactly one theme resource

In order to fully understand deegree WMS configuration, you will have to learn
configuration of other workspace aspects as well. Chapter Map styles describes the
(;) creation of layers and styling rules. Chapter Feature stores describes the
et configuration of vector data access and chapter Coverage stores describes the
configuration of raster data access.

5.2.1. A word on layers and themes

Readers familiar with the WMS protocol might be wondering why layers can not be configured
directly in the WMS configuration file. Inspired by WMTS 1.0.0 we found the idea to separate
structure and content very appealing. Thinking of a layer store that just offers a set of layers is an
easy concept. Thinking of a theme as a structure that may contain layers at certain points also
makes sense. But when thinking of WMS the terms begin clashing. We suggest to avoid confusion as
much as possible by using the same name for each corresponding theme, layer and possibly even
tile/feature/coverage data sources. We believe that once you work a little with the concept of

69

themes, and seeing them exported as WMS layer trees, the concepts fit well enough so you can
appreciate the clean cut.

5.2.2. Configuration overview

The configuration can be split up in six sections. Readers familiar with other deegree service
configurations may recognize some similarities, but we’ll describe the options anyway, because
there may be subtle differences. A document template looks like this:

<?xml version="1.0"7>

<deegreeWMS xmlns="http://www.deegree.org/services/wms'>
<!-- actual configuration goes here -->

</deegreelMS>

The following table shows what top level options are available.

Option Cardinal Value Description
ity
SupportedVersions 0..1 Comp Limits active OGC protocol versions
lex
SupportedRequests 0..1 Comp Configuration of WMS requests
lex
UpdateSequence 0..1 Integ Current update sequence, default: 0
er
MetadataStoreld 0.1 Strin Configures a metadata store to check if metadata ids for
g layers exist
MetadataURLTempl 0..1 Strin Template for generating URLs to feature type metadata
ate g
ServiceConfiguratio 1 Comp Configures service content
n lex
GetCapabilitiesForm 0..1 Comp Configures additional capabilities output formats
ats lex
FeatureInfoFormats 0..1 Comp Configures additional feature info output formats
lex
GetMapFormats 0.1 Comp Configures additional image output formats
lex
GetLegendGraphicB 0..1 Strin Configures the background color of generated legends
ackgroundColor g
ExceptionFormats 0.1 Comp Configures additional exception output formats
lex
ExtendedCapabilitie 0..n Comp Extended Metadata reported in GetCapabilities response
S lex

70

Option Cardinal Value Description

ity

LayerLimit 0..1 Integ Maximum number of layers in a GetMap request, default:
er unlimited

MaxWidth 0..1 Integ Maximum width in a GetMap request, default: unlimited
er

MaxHeight 0..1 Integ Maximum height in a GetMap request, default: unlimited
er

CrsCheckStrict 0..1 Boole Configures if the check of the CRS should be strict or not,
an default: false

Strict 0..1 Boole Indicates if the server should behave strictly as specified.

an default: false

5.2.3. Basic options

* SupportedVersions: By default, all implemented WMS protocol versions (1.1.1 and 1.3.0) are
activated. You can control offered WMS protocol versions using the element SupportedVersions.
This element allows any of the child elements <Version>1.1.1</Version> and
<Version>1.3.0</Version>.

* MetadataStoreld: If set to a valid metadata store, the store is queried upon startup with all
configured layer metadata set ids. If a metadata set does not exist in the metadata store, it will
not be exported as metadata URL in the capabilities. This is a useful option if you want to
automatically check for configuration errors/typos. By default, no checking is done.

* MetadataURLTemplate: By default, no metadata URLs are generated for layers in the
capabilities. You can set this option either to a unique URL, which will be exported as is, or to a
template with a placeholder. In any case, a metadata URL will only be exported if the layer has a
metadata set id set. A template looks like this: http://discovery.eu/csw?service=CSW&
request=GetRecordByld&version=2.0.2&id=$%7BmetadataSetld%7D&outputSchema=http://
www.isotc211.0rg/2005/gmd&elementSetName=full. Please note that youw’ll need to escape the &
symbols with & as shown in the example. The ${metadataSetld} will be replaced with the
metadata set id from each layer.

* CrsCheckStrict: By default the requested CRS are limited by the CRS supported by deegree. Set
this to false if an exception (with code InvalidCRS or InvalidSRS) should be thrown if the request
CRS is not support by the layer.

Here is a snippet for quick copy & paste:

<SupportedVersions>

<Version>1.1.1</Version>
</SupportedVersions>
<MetadataStoreld>mdstore</MetadataStoreld>
<MetadataURLTemplate>http://discovery.eu/csw?service=CSW& request=GetRecordById&
;version=2.0.2& id=${metadataSetId}&outputSchema=http://www.isotc211.0rg/2005/g
md& elementSetName=full</MetadataURLTemplate>

71

http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full
http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full
http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full

5.2.4. SupportedRequests

This option can be

used to configure the supported request types. Currently, the supported
encodings can be specified for each request type. If the option is missing, all encodings are

supported for each request type. The option has the following sup-options:

Option Cardi
nalit
y

SupportedE 0..1

ncodings

GetCapabilit 0..1
ies

GetMap 0.1

GetFeaturel 0..1
nfo

DescribeLay 0..1
er

GetLegendG 0..1
raphic

GetFeaturel 0..1
nfoSchema

DTD 0.1

Val Description
ue

Stri Enable encodings for all configured request types. Allowed values: 'kvp',
ng ‘'xml), 'soap'. Multiple values must be separated by a white space.

Co Configuration of GetCapabilities requests
mpl
ex

Co Configuration of GetMap requests
mpl
ex

Co Configuration of GetFeatureInfo requests
mpl
ex

Co Configuration of DescribeLayer requests
mpl
ex

Co Configuration of GetLegendGraphic requests
mpl
ex

Co Configuration of GetFeatureInfoSchema requests
mpl

ex

Co Configuration of DTD requests

mpl

ex

Each request type has the following sup-option:

Option Cardi
nality

SupportedE 0..1
ncodings

By default, deegree will provide all supported request types with all available encodings (kvp, xml,

soap).

If a single supported request or encoding is configured, all non-configured requests or encodings

are disabled.

72

Val Description
ue

Stri Enable encodings for this request types. Allowed values: 'kvp', 'xml',
ng ‘'soap'. Multiple values must be separated by a white space.

Example: To limit the provided request types to GetCapabilities and GetFeature this request types
can be added without SupportedEncodings sub-option:

<SupportedRequests>
<GetCapabilities />
<GetFeature />

</SupportedRequests>

Example: To disable SOAP encoding the other encodings can be added without SupportedRequests
sub-option:

<SupportedRequests>
<SupportedEncodings>kvp xml</SupportedEncodings>
</SupportedRequests>

A It is not checked if the configuration is valid against the WMS specification!

WMS 1.1.1 just supports KVP. SOAP can only be used for GetCapabilities, GetMap
A and GetFeatureInfo operations of WMS 1.3.0. Nevertheless, configuration of all
combinations is possible.

5.2.5. Service content configuration

The following table shows what options are available.

Option Cardi Val Description
nalit ue
y
DefaultLaye 0.1 Co Configure the behaviour of layers
rOptions mpl
ex
Themeld 0.n Stri Configure the WMS to use one or more preconfigured themes
ng
Copyright 0.1 Co Addsawatermark to the image of GetMap response
mpl
ex

You can configure the behaviour of layers using the DefaultLayerOptions element.

Have a look at the layer options and their values:

73

Option

Cardi Stri Description
nality ng

Antialiasin 0..1 Stri Whether to antialias NONE, TEXT, IMAGE or BOTH, default is BOTH

g

ng

Rendering 0..1 Stri Whether to render LOW, NORMAL or HIGH quality, default is HIGH

Quality

ng

Interpolati 0..1 Stri Whether to use BILINEAR, NEARESTNEIGHBOUR or BICUBIC

on

ng interpolation, default is NEARESTNEIGHBOUR

MaxFeatur 0..1 Inte Maximum number of features to render at once, default is 10000

es ger

FeatureInf 0..1 Inte Number of pixels to consider when doing GetFeaturelnfo, default is 1
oRadius ger

Opaque 0..1 Boo Indicates if the map data of the layer are mostly or completely opaque

lea (true) or represents vector features that probably do not completely fill
n space (false), default is false

You can configure the WMS to use one or more preconfigured themes. In WMS terms, each theme is
mapped to a layer in the WMS capabilities. So if you use one theme, the WMS root layer
corresponds to the root theme. If you use multiple themes, a synthetic root layer is exported in the
capabilities, with one child layer corresponding to each root theme. The themes are configured
using the Themeld element.

The following table shows the Copyright configuration:

Option

Text

Image

OffsetX

OffsetY

Cardi Stri Description

nality ng

0..1 Stri The text of the copyright.
ng

0..1 Stri An image used as copyright. It may be a relative or absolute reference to
ng afile or a http url.

0..1 Inte The offset from the left of the GetMap response image to the left of the
ger copyright in pixel (default: 8).

0.1 Inte The offset from the bottom of the GetMap response image to the bottom
ger of the copyright in pixel (default: 13).

At least one of Text or Image must be configured. OffsetX and OffsetY are optional, but if OffsetX is
configured, OffsetY must be configured, too (and vice versa).

Here is an example snippet:

74

<Copyright>
<Text>(c) deegree</Text>
<0ffsetX>10</0ffsetX>
<0ffsetY>20</0ffsetY>
</Copyright>

Here is an example snippet of the content section:

<ServiceConfiguration>

<DefaultlLayerOptions>
<Antialiasing>NONE</Antialiasing>
</DefaultlLayerOptions>

<ThemeId>mytheme</ThemeId>

</ServiceConfiguration>

5.2.6. Visibility Inspector
You can configure the visibility of layers using the VisibilityInspector element.

Have a look at the options of the VisibilityInspector:

Option Cardi Val Description
nality ue

JavaClass 1 Stri Implementation of interface
ng org.deegree.services.wms.visibility.LayerVisibilityInspector to check if a
requested layer and corresponding sublayers should be rendered in a
GetMap response.

CategoryL. 0.n Stri Identifier of (category) layers (that are requestable in GetMap requests)
ayerldenti ng which should be checked. If no CategoryLayerIdentifier is specified all
fier layers are checked.

The implementation of the visibility inspector checks whether a requested layer and its
corresponding sublayers are rendered in a GetMap response. These (category) layers are defined in
the CategoryLayerldentifier element. Of course, also non category layers can be configured here, but
for most use cases category layers will be more useful. If no CategoryLayerldentifier are configured,
the VisibilityInspector is applied to all layers.

Note: If a CategoryLayerldentifier is configured, the visibility inspector will just be executed if
exactly this layer is requested. Still, as already stated above, the visibility inspector is applied to the
requested layer plus all of its sublayers. If just one or more sublayers of the configured
CategoryLayerldentifier are requested, the visibility inspector is NOT applied. This behaviour
prevents that complex analyses and/or functions are executed during each GetMap request.

75

Example:

<wms:VisibilityInspector>
<wms:JavaClass>org.deegree.VisibilityChecker</wms:JavaClass>
<wms:LayerIdentifier>category_layer</wms:LayerIdentifier>
</wms:VisibilityInspector>

The layer category_layer has two sublayers layerl and layer2. If category_layer is requested by a
GetMap request, the visibility inspector org.deegree.VisibilityChecker is applied to category_layer,
layer1 and layer2. If layer1 and/or layer2 are requested by a GetMap request, the visibility inspector
is not applied to any layer.

5.2.7. Custom capabilities formats

Any mime type can be configured to be available as response format for GetCapabilities requests,
although the most commonly used is probably text/html. An XSLT script is used to generate the
output.

This is how the configuration section looks like:

<GetCapabilitiesFormats>
<GetCapabilitiesFormat>
<XSLTFile>capabilities2html.xs1</XSLTFile>
<Format>text/html</Format>
</GetCapabilitiesFormat>
</GetCapabilitiesFormats>

Of course, it is possible to define as many custom formats as you want, as long as you use a
different mime type for each (just duplicate the GetCapabilitiesFormat element). If you use one of
the default formats, the default output will be overridden with your configuration.

5.2.8. Custom feature info formats

Any mime type can be configured to be available as response format for GetFeatureInfo requests,
although the most commonly used is probably text/html. There are two alternative ways of
controlling how the output is generated (besides using the default HTML output). One involves a
deegree specific templating mechanism, the other involves writing an XSLT script. The deegree
specific mechanism has the advantage of being considerably less verbose, making common use
cases very easy, while the XSLT approach gives you all the freedom.

This is how the configuration section looks like for configuring a deegree templating based format:

76

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<File>../customformat.gfi</File>
<Format>text/html</Format>
<Property name="customname" value="customvalue" />
</GetFeatureInfoFormat>
</FeaturelnfoFormats>

The configuration for the XSLT approach looks like this:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<XSLTFile gmlVersion="GML_32">../customformat.xs1</XSLTFile>
<Format>text/html</Format>
<Property name="customname" value="customvalue" />
</GetFeatureInfoFormat>
</FeatureInfoFormats>

Of course, it is possible to define as many custom formats as you want, as long as you use a
different mime type for each (just duplicate the GetFeaturelnfoFormat element). If you use one of
the default formats, the default output will be overridden with your configuration.

In order to write your XSLT script, you’ll need to develop it against a specific GML version
(namespaces between GML versions may differ, GML output itself will differ). The default is GML
3.2, you can override it by specifying the gmlVersion attribute on the XSLTFile element. Valid GML
version strings are GML_2, GML_30, GML_31 and GML_32.

If you want to learn more about the templating format, read the following sections.

5.2.9. GeoJSON feature info format

Besides XML, Text and HTML, deegree supports GeoJSON as output format:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<G6eoJSON allowOtherCrsThanWGS84="true" allowExportOfGeometries="true" />
<Format>application/geo+json</Format>
</GetFeatureInfoFormat>
</FeaturelnfoFormats>

Using the element Geo/SON enables GeoJSON as GetFeatureInfo output format. The GeoJSON option
has the following sub-options:

77

Option Cardinality Value Description

@allowExpor 0..1 Boolean Per default, geometries are not written. With this option,

tOfGeometrie the geometries are written if the vendor-specific

S parameter GEOMETRIES is set to true in the request.
Default: false

@allowOther 0..1 Boolean GeoJSON only allows geometries in WGS84. With this

CrsThanWGS option, the geometries are written in the requested CRS.

84 The vendor-specific parameter INFO_CRS can be used in

the request to control the CRS of the geometries in the
response. Default: false

5.2.10. FeatureInfo templating format

The templating format can be used to create text based output formats for FeatureInfo output. It
uses a number of definitions, rules and special constructs to replace content with other content
based on feature and property values. Please note that you should make sure your file is UTF-8
encoded if you’re using umlauts.

Introduction/Example

This section gives a quick overview how the format works and demonstrates the development of a
small sample HTML output.

On top level, you can have a number of template definitions. A template always has a name, and
there always needs to be a template named start (yes, it’s the one we start with).

A simple valid templating file that does not actually depend on the features coming in looks like
this:

<?template start>

<html>

<body>
<p>Hello</p>

</body>

</html>

A Featurelnfo request will now always yield the body of this template. In order to use the features
coming in, you need to define other templates, and call them from a template. So let’s add another
template, and call it from the start template:

78

<?template start>

<html>

<body>

<?feature *:myfeaturetemplate>

</body>

</html>

<?template myfeaturetemplate>
I have a feature

What happens now is that first the body of the start template is being output. In that output, the
<?feature *:myfeaturetemplate> is replaced with the content of the myfeaturetemplate template for
each feature in the feature collection. So if your query hits five features, youw’ll get five li tags like in
the template. The asterisk is used to select all features, it’s possible to limit the number of objects
matched. See below in the reference section for a detailed explanation on how it works.

Within the myfeaturetemplate template you have switched context. In the start template your
context is the feature collection, and you can call feature templates. In the myfeaturetemplate you
'went down' the tree and are now in a feature context, where you can call property templates. So
what can we do in a feature context? Let’s start simple by writing out the feature type name.
Change the myfeaturetemplate like this:

<?template myfeaturetemplate>
I have a <?name> feature</1i>

What happens now is that for each use of the myfeaturetemplate the <?name> part is being replaced
with the name of the feature type of the feature you hit. So if you hit two features, each of a
different type, you get two different li tags in the document, each with its name written in it.

So deegree only replaces the template call in the start template with its replacement once the
special constructs in the called template are all replaced, and all the special constructs/calls within
that template are all replaced, ... and so on.

Let’s take it to the next level. What’s you really want to do in featureinfo responses is of course get
the value of the features' properties. So let’s add another template, and call it from the
myfeaturetemplate template:

<?template myfeaturetemplate>
<1i>I have a <?name> feature and properties: <?property *:mypropertytemplate></1i>

<?7template mypropertytemplate>
<?7name>=<?value>

Now you also get all property names and values in the li item. Note that again you switched the

79

context in the template, now you are at property level. The <?name> and <?value> special
constructs yield the property name and value, respectively (remember, we’re at property level
here).

While that’s already nice, people often put non human-readable values in properties, even property
names are sometimes not human-readable. In order to fix that, you often have code lists mapping
the codes to proper text. To use these, there’s a special kind of template called a map. A map is like a
simple property file. Let’s have a look at how to define one:

<?map mycodelistmap>
codel=Street
code2=Highway
code3=Railway

<?map mynamecodelistmap>
tp=Type of way

Looks simple enough. Instead of template we use map, after that comes the name. Then we just map
codes to values. So how do we use this? Instead of just using the <?name> or <?value> we push it
through the map:

<?template mypropertytemplate>
<?name:map mynamecodelistmap>=<?value:map mycodelistmap>

Here the name of the property is replaced with values from the mynamecodelistmap, the value is
replaced with values from the mycodelistmap. If the map does not contain a fitting mapping, the
original value is used instead.

That concludes the introduction, the next section explains all available special constructs in detail.

Templating special constructs

This section shows all available special constructs. The selectors are explained in the table below.
The validity describes in which context the construct can be used (and where the description
applies). The validity can be one of top level (which means it’s the definition of something),
featurecollection (the start template), feature (a template on feature level), property (a template on
property level) or map (a map definition).

Construct Validity Description

<?template _name>_ top level defines a template with name name

<?map _name>_ top level defines a map with name name

<?feature featurecolle calls the template with name name for features matching the
selector:_name_>_ ction selector selector

<?property feature calls the template with name name for properties matching the
selector:__name_>_ selector selector

80

Construct
<?name>
<?name>

<?name:map
name>

<?name:map
name>

<?value>

<?value:map
name>
<?index>

<?index>

<?gmlid>

<?0dd:__name >_

<?o0dd:__name >_

<?even:.__name_>_

<?even:.__name_>_

<?link:_prefix_:>

Validity
feature

property

feature

property

property
property

feature

property

feature

feature

property

feature

property

property

<?link:_prefix_:__tex property

>

Description
evaluates to the feature type name
evaluates to the property name

uses the map name to map the feature type name to a value

uses the map name to map the property name to a value

evaluates to the property’s value

uses the map name to map the property’s value to another
value

evaluates to the index of the feature (in the list of matches from
the previous template call)

evaluates to the index of the property (in the list of matches
from the previous template call)

evaluates to the feature’s gml:id

calls the name template if the index of the current feature is
odd

calls the name template if the index of the current property is
odd

calls the name template if the index of the current feature is
even

calls the name template if the index of the current property is
even

if the value of the property is not an absolute link, the prefix is
prepended

the text of the link will be text instead of the link address

The selector for properties and features is a kind of pattern matching on the object’s name.

Selector
*

* text
text *

not(selector)

selectorl, selector2

Description

matches all objects

matches all objects with names ending in text
matches all objects with names starting with text
matches all objects not matching the selector selector

matches all objects matching selectorl and selector2

5.2.11. Custom image output formats

Any mime type of the following output formats can be configured to be available as response

81

format for GetMap requests.

* image/png

* image/png; subtype=8bit
* image/png; mode=8bit

* image/gif

* image/jpeg

» image/tiff

* image/x-ms-bmp

If no format has been configured, all formats are supported.

This is how the configuration section looks like for configuring only image/png as image output
format:

<GetMapFormats>
<GetMapFormat>image/png</GetMapFormat>
</GetMapFormats>

Custom legend graphic background

The background color of generated legends can be configured as follows:

<wms :GetLegendGraphicBackgroundColor>#859644</wms:GetLegendGraphicBackgroundColor>

The color must be encoded as hexadecimal value.

Custom format provider class

Using option element CustomGetMapFormat, it is possible to plug-in your own Java classes to
generate the output for a specific mime type

Option Cardinality Value Description

Format 1.1 String Mime type associated with this format configuration
JavaClass 1.1 String Qualified Java class name

Property 0.n Complex Configure properties of the JavaClass

* Format: Mime type associated with this format configuration (and announced in
GetCapabilities)

* JavaClass: Therefore, an implementation of interface org.deegree.rendering.r2d.ImageSerializer
must be present on the classpath.

* Property:

82

This is how the configuration looks like for the implementation of GeoTIFF:

<GetMapFormats>
<CustomGetMapFormat>
<Format>image/tiff</Format>
<JavaClass>
org.deegree.services.wms.controller.plugins.ImageSerializerGeoTiff</JavaClass>
</CustomGetMapFormat>
</GetMapFormats>

5.2.12. Custom exception formats

Any mime type can be configured to be available as response format for Exceptions, although the
most commonly used is probably text/html. A XSLT script is used to generate the output.

This is how the configuration section looks like:

<ExceptionFormats>
<ExceptionFormat>
<XSLTFile>exception2html.xs1</XSLTFile>
<Format>text/html</Format>
</ExceptionFormat>
</ExceptionFormats>

Of course it is possible to define as many custom formats as you want, as long as you use a different
mime type for each (just duplicate the ExceptionFormat element). If you use one of the default
formats, the default output will be overridden with your configuration.

5.2.13. Extended capabilities

Important for applications like INSPIRE, it is often desirable to include predefined blocks of XML in
the extended capabilities section of the WMS capabilities output. This can be achieved simply by
adding these blocks to the extended capabilities element of the configuration:

<ExtendedCapabilities>
<MyCustomOutput xmlns="http://www.custom.org/output">

</MyCustomOutput>
</ExtendedCapabilities>

The extended capabilities set in the WMS service configuration are ignored, if a
metadata configuration file (see chapter Metadata) exists. Instead, the extended
capabilities must be configured there.

83

Extended Capabilities are currently not supported by WMS 1.1.1. In WMS 1.1.1
A configured extended capabilities are ignored and not included in the capabilities
document.

5.2.14. Propagation of supported SLD functionality

The deegree WMS has extensive support for styling languages SLD/SE versions 1.0.0 and 1.1.0 but
does not propagate this by default. This can be achieved by adding these blocks to the extended
capabilities element of the configuration:

<ExtendedCapabilities>

<sld:UserDefinedSymbolization xmlns:sld="http://www.opengis.net/sld" SupportSLD="1"
UserLayer="1" UserStyle="1" RemoteWFS="0" InlineFeature="1"/>
</ExtendedCapabilities>

5.2.15. Vendor specific parameters

The deegree WMS supports a number of vendor specific parameters. Some parameters are
supported on a per layer basis while some are applied to the whole request. Most of the parameters
correspond to the layer options above.

The parameters which are supported on a per layer basis can be used to set an option globally, e.g.
...&REQUEST=GetMap&ANTIALIAS=BOTH&..., or for each layer separately (using a comma
separated list):
&REQUEST=GetMap&ANTIALIAS=BOTH,TEXT,NONE&LAYERS=layer1,layer2,Jayer3&... Most of th
layer options have a corresponding parameter with a similar name: ANTIALIAS, INTERPOLATION,
QUALITY and MAX_FEATURES. The feature info radius can currently not be set dynamically.

The PIXELSIZE parameter can be used to dynamically adjust the resolution of the resulting image.
The default is the WMS default of 0.28 mm. So to achieve a double resolution, you can double the
WIDTH/HEIGHT parameter values and set the PIXELSIZE parameter to 0.14.

Using the QUERYBOXSIZE parameter you can include features when rendering that would normally
not intersect the envelope specified in the BBOX parameter. That can be useful if you have labels at
point symbols out of the envelope which would be rendered partly inside the map. Normal GetMap
behaviour will exclude such a label. With the QUERYBOXSIZE parameter you can specify a factor by
which to enlarge the original bounding box, which is used solely for querying the data store (the
actual extent returned will not be changed!). Use values like 1.1 to enlarge the envelope by 5% in
each direction (this would be 10% in total).

With the two vendorspecific parameter FILTERPROPERTY and FILTERVALUE you can request
rendering just a defined list of features. Each feature to be rendered will be identified by the value
of a given property. The name of the property is defined by the parameter filterproperty. The name
of the property is not qualified so all properties with the given local name will be considered. A list
of valid property values will be defined using parameter filtervalue, multiple values must be
comma separated. Each layer - or better its underlying data source - requested by a GeMap will be
evaluated for having a feature with a property with given name and one of the defined values. Just

84

the features matching this filter condition will be rendered. It’s quite natural that only layer with
an underlying Feature-DataSource can be filtered. If one of the parameters is missing or the value
empty, the filter is not applied. Example:

FILTERPROPERTY=type&FILTERVALUE=stone,wood

Using the vendorspecific parameter CQL2_FILTER a more complex expression can be used to filter
the underlying data source. The CQL2_FILTER supports:
* Logical operators
o AND
» Comparison operators

o equal to (=), with string, int and double values

Advanced Comparison Operators
o LIKE
* Case-insensitive Comparison

o within supported comparison operators and advanced comparison operators

Spatial Functions

o S_INTERSECTS

Temporal Functions

o T_AFTER

Temporal Functions

o T_AFTER

CQL2_FILTER=T_AFTER(creationDate, TIMESTAMP('2025-04-14T08:59:307"))
CQL2_FILTER=S_INTERSECTS(geometry,BBOX(36.319836,32.288087,37.319836,33.288087))
city="Bonn'

CQL2_FILTER=city%3D%27Bonn%27

#index=10

CQL2_FILTER=index%3D10

city LIKE CASEI('B_N%')

CQL2_FILTER=city%20LIKE%20CASEI%28%27B_N%25%27%29

city="Bonn' AND str LIKE 'Erm%'
CQL2_FILTER=city%3D%27Bonn%27%20AND%20str%20LIKE%20%27Erm%25%27

The other parameters addressed in the GetMap request (e.g. the style) are not effected by the
parameters FILTERPROPERTY, FILTERVALUE and CQL2FILTER. If the filter cannot be applied to the
layer, e.g. because it is a raster layer or the data source does not match the filter, the filter will be
ignored.

In a GetFeaturelnfo request the parameter GEOMETRIES can be used to return the geometries of a
feature in GML and GeoJSON output. The default is false. The parameter INFO_CRS can be used in

85

the GetFeatureInfo request to control the CRS of the geometries in the GeoJSON response. Default is
WGS84. For GeoJSON output both parameters applies only if it is enabled in the configuration
(GeoJSON feature info format).

5.2.16. XML request encoding

A WMS 1.3.0 can be requested by HTTP POST (without any KVP) containing XML in request body.
The provided XML has to be compliant to a specific XML schema depending on the requested
operation.

The operations GetCapabilities, GetMap and GetFeatureInfo support XML request encoding.

GetCapabilities

The GetCapabilities XML request body has to be compliant to following schema:
* https://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd

GetCapabilities XML request body example (can be used with Utah example workspace)

<GetCapabilities xmlns="http://www.opengis.net/ows/2.0" xmlns:xsi=

“http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/ows/2.0

http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd"/>

GetMap

The GetMap XML request body has to be compliant to following schema:
 https://schemas.opengis.net/sld/1.1/GetMap.xsd

GetMap XML request body example (can be used with Utah example workspace)

86

https://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd
https://schemas.opengis.net/sld/1.1/GetMap.xsd

<?xml version="1.0" encoding="UTF-8"?>
<GetMap xmlns="http://www.opengis.net/sld" xmlns:ows="http://www.opengis.net/ows"
xmlns:se="http://www.opengis.net/se"
xmlns:wms="http://www.opengis.net/wms" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://www.opengis.net/s1d
http://schemas.opengis.net/s1d/1.1/GetMap.xsd" version="1.3.0">
<StyledlLayerDescriptor version="1.1.0">
<NamedLayer>
<se:Name>municipalities</se:Name>
<NamedStyle>
<se:Name>Municipalities</se:Name>
</NamedStyle>
</NamedLayer>
<NamedLayer>
<se:Name>counties</se:Name>
<NamedStyle>
<se:Name>CountyBoundary</se:Name>
</NamedStyle>
</NamedLayer>
<NamedLayer>
<se:Name>zipcodes</se:Name>
<NamedStyle>
<se:Name>default</se:Name>
</NamedStyle>
</NamedLayer>
</StyledlLayerDescriptor>
<CRS>EPSG:4326</CRS>
<BoundingBox crs="http://www.opengis.net/gml/srs/epsqg.xml#4326">
<ows:LowerCorner>-115.4 35.0</ows:LowerCorner>
<ows:UpperCorner>-108.0 44.0</ows:UpperCorner>
</BoundingBox>
<Output>
<Size>
<Width>1024</Width>
<Height>512</Height>
</Size>
<wms :Format>image/png</wms:Format>
<Transparent>true</Transparent>
</0Qutput>
<Exceptions>XML</Exceptions>
</GetMap>

GetFeaturelInfo

The GetFeatureInfo XML request body has to be compliant to following schema:

87

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.opengis.net/ows"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sld="http://www.opengis.net/s1d"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="http://www.opengis.net/sld" schemalocation=
"http://schemas.opengis.net/sld/1.1.0/GetMap.xsd"/>
<xs:annotation>
<xs:documentation xml:lang="en">
XML Schema for 0GC Web Map Service GetFeaturelnfo request.
</xs:documentation>
</xs:annotation>
<!-- Root Element -->
<xs:element name="GetFeatureInfo"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType>
<Xs:sequence>
<xs:element ref="s1d:GetMap"/>
<xs:element name="QuerylLayer" type="xs:string"
minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="I" type="xs:nonNegativeInteger"/>
<xs:element name="J" type="xs:nonNegativeInteger"/>
<xs:element name="Output">
<xs:complexType>
<xs:sequence>
<xs:element name="InfoFormat" type="xs:string"/>
<xs:element name="FeatureCount" type="xs:positiveInteger" minOccurs="0
"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Exceptions" type="xs:string" minOccurs="0"/>
<xs:element name="Vendor" minOccurs="0">
<!--not sure how to define vendor-specific area in open manner-->
</xs:element>
</Xs:sequence>
<xs:attribute name="version" type="xs:string" use="required"/>
<xs:attribute name="service" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

GetFeatureInfo XML request body example (can be used with Utah example workspace)

88

<?xml version="1.0" encoding="UTF-8"?>
<GetFeatureInfo xmlns="http://www.opengis.net/ows" xmlns:sld=
"http://www.opengis.net/sld" xmlns:se="http://www.opengis.net/se"
xmlns:wms="http://www.opengis.net/wms" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.opengis.net/ows ../xsd/GFI.xsd"
version="1.3.0" service="WMS">
<sld:GetMap version="1.3.0">
<sld:StyledlLayerDescriptor version="1.1.0">
<sld:NamedLayer>
<se:Name>municipalities</se:Name>
<sld:NamedStyle>
<se:Name>Municipalities</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
<sld:NamedLayer>
<se:Name>counties</se:Name>
<sld:NamedStyle>
<se:Name>CountyBoundary</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
<sld:NamedLayer>
<se:Name>zipcodes</se:Name>
<sld:NamedStyle>
<se:Name>default</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
</sld:StyledlLayerDescriptor>
<s1d:CRS>EPSG:4326</s1d:CRS>
<sld:BoundingBox crs="http://www.opengis.net/gml/srs/epsqg.xml#4326">
<LowerCorner>-115.4 35.0</LowerCorner>
<UpperCorner>-108.0 44.0</UpperCorner>
</s1d:BoundingBox>
<sld:Output>
<sld:Size>
<sld:Width>1024</s1d:Width>
<sld:Height>512</s1d:Height>
</sld:Size>
<wms :Format>image/png</wms:Format>
</sld:0utput>
</sld:GetMap>
<QuerylLayer>counties</QuerylLayer>
<I>50</1>
<I>15</3>
<Qutput>
<InfoFormat>text/xml</InfoFormat>
</0Qutput>
</GetFeaturelInfo>

89

5.2.17. SOAP request encoding

The SOAP protocol can be used to request a WMS 1.3.0. SOAP 1.1 and 1.2 are supported.

A SOAP request is send via HTTP POST (without any KVP) and contains a XML request body. The
request body consists of a SOAP envelope and a XML request body as described in chapter XML
request encoding.

The operations GetCapabilities, GetMap and GetFeatureInfo support SOAP request encoding.

GetCapabilities SOAP request body example (can be used with Utah example workspace)

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<GetCapabilities xmlns="http://www.opengis.net/ows/2.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/ows/2.0

http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd"/>

</soapenv:Body>
</soapenv:Envelope>

o SOAP encoding can be deactivated. Chapter SupportedRequests describes and
gives an example how to disable it.

Capabilities

The support of the SOAP protocol by the WMS is described by an ExtendedCapabilities element in
namespace https://schemas.deegree.org/extensions/services/wms/1.3.0.

The ExtendedCapabilities are compliant to following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://schemas.deegree.org/extensions/services/wms/1.3.0" xmlns:wms
="http://www.opengis.net/wms"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:soapwms=
"http://schemas.deegree.org/extensions/services/wms/1.3.0"
targetNamespace="http://schemas.deegree.org/extensions/services/wms/1.3.0">

<xs:import namespace="http://www.opengis.net/wms" schemalocation=
"http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd" />

<xs:element name="SOAP">
<xs:complexType>
<xs:sequence>
<xs:element ref="wms:0nlineResource"” minOccurs="1" maxOccurs="1" />
<xs:element ref="soapwms:Constraint" minOccurs="1" maxOccurs="1" />
<xs:element ref="soapwms:SupportedOperations"” minOccurs="1" maxOccurs="1" />
</xs:sequence>

90

https://schemas.deegree.org/extensions/services/wms/1.3.0

</xs:complexType>
</xs:element>
<xs:element name="Value">
<xs:simpleType>
<xs:restriction base="xs:decimal">
<xs:enumeration value="1.1" />
<xs:enumeration value="1.2" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Operation">
<xs:complexType>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="GetCapabilities" />
<xs:enumeration value="GetFeatureInfo" />
<xs:enumeration value="GetMap" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="Constraint">
<xs:complexType>
<Xxs:sequence>
<xs:element ref="soapwms:Value" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="SOAPVersion" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="SupportedOperations">
<xs:complexType>
<Xs:sequence>
<xs:element ref="soapwms:Operation" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExtendedCapabilities" substitutionGroup="
wms:_ExtendedCapabilities">
<xs:complexType>
<XxS:sequence>
<xs:element ref="soapwms:SOAP" minOccurs="0" maxOccurs="1" />
</Xs:sequence>
</xs:complexType>

91

</xs:element>
</xs:schema>

5.3. Web Map Tile Service (WMTS)

In deegree terminology, a deegree WMTS provides access to tiles stored in tile stores. The WMTS is
configured using so-called themes. A theme can be thought of as a collection of layers, organized in
a tree structure.

/— deegree workspace \

WMS

Theme 1 Theme 2 Theme n

. /

Figure 36. A WMTS resource is connected to any number of theme resources (with tile layers)

In order to fully understand deegree WMTS configuration, you will have to learn

configuration of other workspace aspects as well. Chapter Tile stores describes the

@ configuration of tile data access. Chapter Map layers describes the configuration of

v layers (only tile layers are usable for the WMTS). Chapter Map themes describes
how to create a theme from layers.

5.3.1. Minimal example

The only mandatory section is ServiceConfiguration (which can be empty), therefore a minimal
WMTS configuration example looks like this:

WMTS config example 1: Minimal configuration

<deegreeWMTS
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts
https://schemas.deegree.org/core/3.6/services/wmts/wmts.xsd">
<ServiceConfiguration />

</deegreeWMTS>

This will create a deegree WMTS resource that connects to all configured themes of the workspace.

92

5.3.2. More complex example

A more complex configuration that restricts the offered themes looks like this:

WMTS config example 2: More complex configuration

<deegreeWMTS
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts
https://schemas.deegree.org/core/3.6/services/wmts/wmts.xsd">

<ServiceConfiguration>
<ThemeId>water</Themeld>
<ThemeId>roads</Themeld>

</ServiceConfiguration>

</deegreeWMTS>

5.3.3. Configuration overview

The deegree WMTS config file format is defined by schema file https://schemas.deegree.org/core/3.6/
services/wmts/wmts.xsd. The root element is deegreeWMTS.

The following table lists all available configuration options. When specifying them, their order must
be respected.

Option Cardinal Value Description
ity
MetadataURLTempl 0..1 Strin Template for generating URLs to layer metadata
ate g
Themeld 0.n Strin Limit the themes to use
g

Below the ServiceConfiguration section you can specify custom featureinfo format handlers:

<ServiceConfiguration>

</ServiceConfiguration>
<FeaturelnfoFormats>

</FeatureInfoFormats>

Have a look at section Custom feature info formats (in the WMS chapter) to see how custom
Featurelnfo formats are configured. Take note that the GetFeatureInfo operation is currently only
supported for remote WMS tile store backends.

93

https://schemas.deegree.org/core/3.6/services/wmts/wmts.xsd
https://schemas.deegree.org/core/3.6/services/wmts/wmts.xsd

5.3.4. A complete WMTS configuration example, based on a
GeoTIFFTileStore

1. Storing the GeoTIFF file in the data/geotiff/.. directory of the deegree workspace

2. Adding the GeoTIFFTileMatrixSet configuration to datasources/tile/tilematrixset/.., referencing
config file from step (1)

o GeoTIFFTileMatrixSet config example:

<GeoTIFFTileMatrixSet xmlns=
"http://www.deegree.org/datasource/tile/tilematrixset/geotiff"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://www.deegree.org/datasource/tile/tilematrixset/geotiff
https://schemas.deegree.org/core/3.6/datasource/tile/tilematrixset/geotiff/geot
ff.xsd">
<StorageCRS>EPSG:25832</StorageCRS>
<File>../../../data/geotiff/kulturlandschaft.tif</File>
</GeoTIFFTileMatrixSet>

3. Adding a GeoTIFFTileStore configuration to datasources/tile/.. for the GeoTIFF file added in (1)
and (2)

o GeoTIFFTileStore config example:

<GeoTIFFTileStore xmlns="http://www.deegree.org/datasource/tile/geotiff"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/geotiff
https://schemas.deegree.org/core/3.6/datasource/tile/qgeotiff/geotiff.xsd">
<TileDataSet>
<Identifier>wmts_acrit</Identifier>
<TileMatrixSetId>tilematrixset wmts acrit</TileMatrixSetId>
<File>../../data/geotiff/kulturlandschaft_1.tif</File>
<ImageFormat>image/png</ImageFormat>
</TileDataSet>
</GeoTIFFTileStore>

0 Use "image/png" as ImageFormat even if the source is GeoTIFF.

4. Adding a TileLayer configuration in layers/.. with reference to the TileDataSet in (3)

o TileLayer config example:

94

<Tilelayers xmlns="http://www.deegree.org/layers/tile"
xmlns:1="http://www.deegree.org/layers/base"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:s="http://www.deegree.org/metadata/spatial”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/layers/tile
https://schemas.deegree.org/core/3.6/1ayers/tile/tile.xsd">
<Tilelayer>
<1:Name>wmts_acrit</1:Name>
<d:Title>Wmts Acrit tiled</d:Title>
<!-- Tile layers are not capable of on-the-fly reprojection so only the
source CRS can be requested -->
<s:CRS>EPSG:25832</s: (RS>
<1:ScaleDenominators min="0.0" max="1000000.0" />
<TileDataSet tileStoreld="wmts_acrit">wmts_acrit</TileDataSet>
</Tilelayer>
</Tilelayers>

5. Adding a Themes configuration in themes/.. with reference to the TileLayer in (4)

- Themes config example:

<Themes xmlns="http://www.deegree.org/themes/standard"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:s="http://www.deegree.org/metadata/spatial"
xsi:schemalocation="http://www.deegree.org/themes/standard
https://schemas.deegree.org/core/3.6/themes/themes.xsd">
<LayerStoreld>layer_tile_wmts_acrit</LayerStoreld>
<Theme>
<d:Title>Root theme</d:Title>
<s:CRS>EPSG:25832</s:CRS>
<Theme>
<Identifier>Karte</Identifier>
<d:Title>Karte</d:Title>
<Layer>wmts_acrit</Layer>
</Theme>
</Theme>
</Themes>

6. Adding a WMTS service configuration file to services/.. with reference to the theme in (5)

o WMTS service config example:

95

<deegreeWMTS xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts

https://schemas.deegree.org/core/3.6/services/wmts/wmts.xsd">

<MetadataURLTemplate>http://some.service/services?service=CSW& request=GetRe

cordById&version=2.0.2&outputSchema=http://www.isotc211.0rg/2005/gmd&

;elementSetName=full&id=${metadataSetId}</MetadatalURLTemplate>

<ServiceConfiguration>

<ThemeId>wmts_acrit_theme</ThemeId>
</ServiceConfiguration>
</deegreeWMTS>

5.3.5. Optimizing deegree WMTS

In order to improve the response time of WMTS GetTile requests, it is possible to add an Ehcache
configuration to optimize the throughput of the service. The configuration is placed in the root
directory of the workspace.

* Ehcache config example:

<config
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance’
xmlns="http://www.ehcache.org/v3’
xsi:schemalocation="http://www.ehcache.org/v3
http://www.ehcache.org/schema/ehcache-core-3.0.xsd">
<cache alias="tilestorecache">
<!-- Don't change key-type and value-type! -->
<key-type>java.lang.String</key-type> (1)
<value-type>byte[]</value-type> (2)
<!-- Don't change key-type and value-type! -->
<expiry>
<tti unit="seconds">300</tti> (3)
</expiry>
<resources>
<offheap unit="MB">10</offheap> (4)
</resources>
</cache>
</config>

(1) and (2) are fix. The elements <key-type> (1) and <value-type> (2) must be taken from the
example!

(3) Entries in the cache should expire if not accessed for 300 seconds.

(4) Configures an In-Memory cache with a maximum size of 10 MB.

96

Further information of the configuration of the cache can be found in
https://www.ehcache.org/documentation/3.0/xmlhtml and
https://www.ehcache.org/documentation/3.0/xsds.html.

* To enable the caching tile store add the following configuration along with the GeoTIFFTileStore
configuration to the datasources/tile/.. directory:

<CachingTileStore xmlns="http://www.deegree.org/datasource/tile/cache"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/cache
https://schemas.deegree.org/core/3.6/datasource/tile/cache/cache.xsd">
<!-- TileStoreld refers to tile store config file wmts_acrit.xml in the same
directory -->
<TileStoreld>wmts_acrit</TileStoreld>
<!-- The related ehcache configuration file in the root directory of the deegree
workspace -->
<CacheConfiguration>../../ehcache_wmts_acrit.xml</CacheConfiguration>
<!-- The name of the cache in the ehcache configuration file
/config/cache/@alias -->
<CacheName>map_cache</CacheName>
</CachingTileStore>

5.3.6. Supported steps by the deegree webservices administration console
Currently, the administration console supports the following steps:

* creating TileStore and TileMatrixSet configuration files
 creating Layer and Themes configuration files

* creating WMTS configuration file

0 Not supported is the creation of the optional Ehcache configuration.

5.4. Catalogue Service for the Web (CSW)

In deegree terminology, a deegree CSW provides access to metadata records stored in a metadata
store. If the metadata store is transaction-capable, CSW transactions can be used to modify the
stored records.

97

https://www.ehcache.org/documentation/3.0/xml.html
https://www.ehcache.org/documentation/3.0/xsds.html

/— deegree workspace \

CSwW

Metadata Store

. J

Figure 37. A CSW resource is connected to exactly one metadata store resource

In order to fully understand deegree CSW configuration, you will have to learn
@ configuration of other workspace aspects as well. Chapter Metadata stores
et describes the configuration of metadatastores.

5.4.1. Minimal example
There is no mandatory element, therefore a minimal CSW configuration example looks like this:

CSW config example 1: Minimal configuration

<?xml version="1.0" encoding="UTF-8"7>

<deegreeCSW
xmlns="http://www.deegree.org/services/csw"
xmlns:xLlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/csw
https://schemas.deegree.org/core/3.6/services/csw/csw_configuration.xsd">

</deegreeCSW>

5.4.2. Configuration overview

The deegree CSW config file format is defined by schema file https://schemas.deegree.org/core/3.6/
services/csw/csw_configuration.xsd. The root element is deegreeCSW.

The following table lists all available configuration options. When specifying them, their order must
be respected.

Option Cardina Valu Description
lity e
SupportedVersions 0..1 Strin Supported CSW Version (Default: 2.0.2)
g
MaxMatches 0..1 Inte Not negative number of matches (Default:0)
ger

98

https://schemas.deegree.org/core/3.6/services/csw/csw_configuration.xsd
https://schemas.deegree.org/core/3.6/services/csw/csw_configuration.xsd

Option Cardina Valu Description

lity e
MetadataStoreld 0..1 Strin Id of the meradatastoreld to use as backend. By default, the
g only configured store is used.
EnableTransaction 0..1 Bool Enable transactions (CSW operations) default: disabled.
S ean (Default: false)
EnablelnspireExte 0..1 Enable the INSPIRE extensions, default: disabled
nsions
ExtendedCapabilit 0..1 any Include referenced capabilities section.
ies URI
ElementNames 0..1
List of configured return profiles. See following
xml snippet for
detailed informations.
<ElementNames>
<!-- Can contain multiuple sets of element names -->
<ElementName>

<!-- name of this set. Used <csw:ElementName>Base</csw:ElementName>
in a reqest to query this profile -->

<name>Base</name>

<!-- List of XPath elements to return. If an element node is specified
the complete node is returned -->

<XPath>/gmd:MD_Metadata/gmd: language</XPath>

<XPath>/gmd:MD_Metadata/gmd:fileldentifier</XPath>

<XPath>/gmd:MD_Metadata/gmd:hierarchylLevel</XPath>

</ElementName>

<ElementName>

5.4.3. Extended Functionality

"

* deegree3 CSW supports JSON as additional output format. Use outputFormat="application/json
in your GetRecords or GetRecordByld Request to get the matching records in JSON.

5.5. Web Processing Service (WPS)

A deegree WPS allows the invocation of geospatial processes. The offered processes are determined
by the attached process provider resources.

99

/— deegree workspace \

WPS

Process Provider 1 Process Provider 2 Process Provider n

. J

Figure 38. Workspace components involved in a deegree WPS configuration

(r) In order to fully master deegree WPS configuration, you will have to understand
- Process providers as well.

5.5.1. Minimal example

A minimal valid WPS configuration example looks like this:

<deegreeWPS xmlns="http://www.deegree.org/services/wps" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/services/wps
https://schemas.deegree.org/core/3.6/services/wps/wps_configuration.xsd">
</deegreelPS>

This will create a WPS resource with the following properties:

» All WPS protocol versions are enabled. Currently, this is only 1.0.0.
» The WPS resource will attach to all process provider resources in the workspace.

* Temporary files (e.g. for process results) are stored in the standard Java temp directory of the
deegree webapp.

The last 100 process executions are tracked.

* Memory buffers (e.g. for inline XML inputs) are limited to 1 MB each. If this limit is exceeded,
buffering is switched to use a file in the storage directory.

5.5.2. Complex example

A more complex configuration example looks like this:

100

<deegreelWlPS xmlns="http://www.deegree.org/services/wps" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wps

https://schemas.deegree.org/core/3.6/services/wps/wps_configuration.xsd">

<SupportedVersions>
<Version>1.0.0</Version>
</SupportedVersions>

<DefaultExecutionManager>
<StorageDir>../var/wps/</StorageDir>
<TrackedExecutions>1000</TrackedExecutions>
<InputDiskSwitchLimit>1048576</InputDiskSwitchLimit>
</DefaultExecutionManager>

</deegreeWPS>

This will create a WPS resource with the following properties:

Enabled WPS protocol versions: 1.0.0

The WPS resource will attach to all process provider resources in the workspace.

 Storage directory for temporary files (e.g. for process results) is /var/wps inside the workspace.

The last 1000 process executions will be tracked.

* Memory buffers (e.g. for inline XML inputs) are limited to 1 MB each. If this limit is exceeded,
buffering is switched to use a file in the storage directory.

5.5.3. Configuration overview

The deegree WPS config file format is defined by schema file https://schemas.deegree.org/core/3.6/
services/wps/wps_configuration.xsd. The root element is deegreeWPS. The following table lists all
available configuration options (complex ones contain nested options themselves). When specifying
them, their order must be respected.

Option Cardinality Value Description
SupportedVersions 0..1 Complex Activated OGC protocol versions, default: all
DefaultExecutionManager 0..1 Complex Settings for tracking process executions

The remainder of this section describes these options and their sub-options in detail.

* SupportedVersions: By default, all implemented WMS protocol versions are activated. Currently,
this is just 1.0.0 anyway. Alternatively you can control offered WPS protocol versions using the
element SupportedVersions. This element allows the child element <Version>1.0.0</Version> for
now.

101

https://schemas.deegree.org/core/3.6/services/wps/wps_configuration.xsd
https://schemas.deegree.org/core/3.6/services/wps/wps_configuration.xsd

5.5.4. DefaultExecutionManager section

This section controls aspects that are related to temporary storage (for input and output parameter
values) during the execution of processes. The DefaultExecutionManager option has the following
sub-options:

Option Cardinal Value Description
ity
StorageDir 0..1 Strin Directory for storing execution-related data, default: Java
g tempdir
TrackedExecution 0..1 Integ Number of executions to track, default: 100
s er
InputDiskSwitchLi 0..1 Integ Limit in bytes, before a ComplexInputInput is written to
mit er disk, default: 1 MiB

5.6. Metadata

This section describes the configuration for the different types of metadata that a service reports in
the GetCapabilities response. These options don’t affect the data that the service offers or the
behaviour of the service. It merely changes the descriptive metadata that the service reports.

In order to configure the metadata for a web service instance xyz, create a corresponding
xyz_metadata.xml file in the services directory of the workspace. The actual service type does not
matter, the configuration works for all types of service alike.

Example for deegreeServicesMetadata

<deegreeServicesMetadata xmlns="http://www.deegree.org/services/metadata"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/metadata

https://schemas.deegree.org/core/3.6/services/metadata/metadata.xsd">

<Serviceldentification>

<Tit1e>INSPIRE Addresses</Title>

<Abstract>Direct Access Download Service for INSPIRE Addresses</Abstract>
</Serviceldentification>

<ServiceProvider>
<ProviderName>The deegree project</ProviderName>
<ProviderSite>http://www.deegree.org</ProviderSite>
<ServiceContact>
<IndividualName>Markus Schneider</IndividualName>
<PositionName>deegree TMC</PositionName>
<Phone>0228/18496-0</Phone>
<Facsimile>0228/18496-29</Facsimile>
<ElectronicMailAddress>info@lat-lon.de</ElectronicMailAddress>
<Address>
<DeliveryPoint>Aennchenstr. 19</DeliveryPoint>

102

<City>Bonn</City>
<AdministrativeArea>NRW</AdministrativeArea>
<PostalCode>53177</PostalCode>
<Country>Germany</Country>
</Address>
<OnlineResource>http://www.deegree.org</OnlineResource>
<Hours0fService>24x7</HoursOfService>
<ContactInstructions>Do not hesitate to call</ContactInstructions>
<Role>PointOfContact</Role>
</ServiceContact>
</ServiceProvider>

<DatasetMetadata>

<MetadataUrlTemplate>http://www.nationaalgeoregister.nl/geonetwork/srv/nl/csw?service=
CSWé& ; request=GetRecordById&version=2.0.2& id=${metadataSetId}</MetadatalriTe
mplate>
<Dataset>
<Name xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0">
ad:Address</Name>
<Title>ad:Address</Title>
<Abstract>Harmonized INSPIRE Addresses (Annex I)</Abstract>
<MetadataSetId>beefcafe-beef-cafe-beef-cafebeefcaf</MetadataSetId>
</Dataset>
</DatasetMetadata>

<ExtendedCapabilities protocolVersions="2.0.0">
<inspire_dls:ExtendedCapabilities xmlns:inspire_dls=

"http://inspire.ec.europa.eu/schemas/inspire_dls/1.0"
xmlns:inspire_common="http://inspire.ec.europa.eu/schemas/common/1.0"
xsi:schemalocation="http://inspire.ec.europa.eu/schemas/common/1.0

http://inspire.ec.europa.eu/schemas/common/1.0/common.xsd

http://inspire.ec.europa.eu/schemas/inspire_dls/1.0

http://inspire.ec.europa.eu/schemas/inspire_d1ls/1.0/inspire_dls.xsd">
<inspire_common:Metadatalrl>

<inspire_common:URL>http://www.nationaalgeoregister.nl/geonetwork/srv/nl/csw?service=C
SW& ; request=GetRecordById&version=2.0.2& id=eea97fc0-8291-11e1-afab-
0800200c9ab6</1inspire_common:URL>
<inspire_common:MediaType>
application/vnd.is0.19139+xml</inspire_common:MediaType>
</inspire_common:Metadatalrl>
<inspire_common:SupportedlLanguages>
<inspire_common:DefaultLanguage>
<inspire_common:Language>ger</inspire_common:Language>
</inspire_common:DefaultLanguage>
</inspire_common:SupportedlLanguages>
<inspire_common:Responselanguage>
<inspire_common:Lanqguage>ger</inspire_common:Language>
</inspire_common:Responselanguage>
<inspire_dls:SpatialDataSetIdentifier>

103

<inspire_common:Code>eea97fc0-8291-11e1-afab-
0800200c9a66</inspire_common:Code>
</inspire_dls:SpatialDataSetIdentifier>
</inspire_dls:ExtendedCapabilities>
</ExtendedCapabilities>

</deegreeServicesMetadata>

The metadata config file format is defined by schema file https://schemas.deegree.org/core/3.6/
services/metadata/metadata.xsd. The root element is deegreeServicesMetadata. The following table
lists all available configuration options (complex ones contain nested options themselves). When
specifying them, their order must be respected.

Option Cardinal Value Description
ity
Serviceldentification 1.1 Compl Metadata that describes the service
ex
ServiceProvider 1.1 Compl Metadata that describes the provider of the service
ex
DatasetMetadata 0..1 Compl Metadata on the datasets provided by the service
ex
ExtendedCapabilities 0..n Compl Extended Metadata reported in OperationsMetadata
ex section

The remainder of this section describes these options and their sub-options in detail.

If a metadata configuration file exists, extended capabilities configured in any

g service configuration (see chapters Web Feature Service (WFS) and Web Map
Service (WMS)) are ignored. Instead, all extended capabilities must be configured
in this file.

5.6.1. Service identification

The Serviceldentification option has the following sub-options:

Option Cardinal Value Description
ity
Title 0.n Strin Title of the service
g
Abstract 0.n Strin Abstract
g
Keywords 0.n Comp Keywords that describe the service
lex

104

https://schemas.deegree.org/core/3.6/services/metadata/metadata.xsd
https://schemas.deegree.org/core/3.6/services/metadata/metadata.xsd

Option Cardinal Value Description

ity
Fees 0..1 Strin Fees that apply for using this service
g
AccessConstraints 0..n Strin Access constraints for this service
g

5.6.2. Service provider

The ServiceProvider option has the following sub-options:

Option Cardinality Value Description

ProviderName 0.1 String Name of the service provider
ProviderSite 0..1 String Website of the service provider
ServiceContact 0..1 Complex Contact information

5.6.3. Dataset metadata

This type of metadata is attached to the datasets that a service offers (e.g. layers for the WMS or
feature types for the WFS). The services themselves may have specific mechanisms to override this
metadata, so make sure to have a look at the appropriate service sections. However, some metadata
configuration can be done right here.

To start with, you’ll need to add a DatasetMetadata container element:

<DatasetMetadata>

</DatasetMetadata>

Apart from the descriptive metadata (title, abstract etc.) for each dataset, you can also configure
_MetadataURL_s, external metadata links and metadata as well as external metadata IDs.

For general MetadataURL configuration, you can configure the element MetadataUrlTemplate. 1ts
content can be any URL, which may contain the pattern ${metadataSetid}. For each dataset (layer,
feature type) the service will output a MetadataURL based on that pattern, if a MetadataSetId has
been configured for that dataset (see below). The template is optional, if omitted, no MetadataURL
will be produced.

Configuration for the template looks like this:

105

<DatasetMetadata>

<MetadataUrlTemplate>http://some.url.de/csw?request=GetRecordById&
service=CSW&version=2.0.2&outputschema=http://www.isotc211.0rg/2005/gmd&el
ementsetname=full& id=${metadataSetId}</Metadatalr1Template>

</DatasetMetadata>

You can also configure ExternalMetadataAuthority elements, which are currently only used by the
WMS. You can define multiple authorities, with the authority URL as text content and a unique
name attribute. For each dataset you can define an ID for an authority by referring to that name.
This will generate an AuthorityURL and Identifier pair in WMS capabilities documents (version 1.3.0

only).

Configuration for an external authority looks like this:

<DatasetMetadata>
<ExternalMetadataAuthority name="myorg">
http://www.myauthority.org/metadataregistry/</ExternalMetadataAuthority>

</DatasetMetadata>

Now follows the list of the actual dataset metadata. You can add as many as you need:

<DatasetMetadata>
<MetadataUrlTemplate>...</MetadatalrlTemplate>

<Dataset>

</Dataset>

<Dataset>

</Dataset>

</DatasetMetadata>

For each dataset, you can configure the metadata as outlined in the following table:

Option

Name

Title
Abstract

MetadataSetId

106

Cardin Value

ality
1

0.n
0.n
0.1

Description

String/Q the layer/feature type name you refer to

Name
String
String

String

can be multilingual by using the lang attribute
can be multilingual by using the lang attribute

is used to generate MetadataURL s, see above

Option Cardin Value Description

ality
ExternalMetadat 0..n String is used to generate AuthorityURL s and Identifier s for WMS,
aSetld see above. Refer to an authority using the authority
attribute.
ExtendedDescript 0..n complex configures extended descriptions (applies only to WFS 2.0)
ion

Extended description

The complex element ExtendedDescription can be configured as follows:

Option Cardin Value Description
ality
Name 1 String the name of the extended descriptive element
Type 1 QName used to designate a type for the values in the value list of the

extended descriptive element (e.g. Xs:int)
Metadata 1 URL URL to reference metadata describing the wfs:Element

Value 1.n String values for the named extended descriptive element

o The ExtendedDescription is written to the WFS 2.0.0 capabilities. It does not apply
to other services/versions.

5.6.4. Extended capabilities

Extended capabilities are generic metadata sections below the OperationsMetadata element in the
GetCapabilities response. They are not defined by the OGC service specifications, but by additional
guidance documents, such as the INSPIRE Network Service TGs. deegree treats this section as a
generic XML element and includes it in the output. If your service supports multiple protocol
versions (e.g. a WES that supports 1.1.0 and 2.0.0), you may include multiple ExtendedCapabilities
elements in the metadata configuration and use attribute protocolVersions to indicate the version
that you want to define the extended capabilities for.

5.7. Service controller

The controller configuration is used to configure various global aspects that affect all services.

Since it’s a global configuration file for all services, it’s called main.xml, and located in the services
directory. All of the options are optional, and you can also omit the file completely.

An empty example file looks like follows:

107

<?xml version='1.0"'?>
<deegreeServiceController xmlns="http://www.deegree.org/services/controller'>
</deegreeServiceController>

The following table lists all available configuration options. When specifying them, their order must
be respected.

Option Cardinality Value Description

ReportedUrls 0..1 Complex Hardcode reported URLs in service
responses

AddDeegreeVersionToHeade 0..1 Boolean Add header "deegree-version" to each

r response, default: false

PreventClassloaderLeaks 0.1 Boolean TODO

RequestLogging 0.1 Complex TODO

ValidateResponses 0..1 Boolean TODO

RequestTimeoutMilliseconds 0..n Complex Maximum request execution time

The following sections describe the available options in detail.

5.7.1. Reported URLs

Some web service responses contain URLs that refer back to the service, for example in capabilities
documents (responses to GetCapabilities requests). By default, deegree derives these URLs from the
incoming request, so you don’t have to think about this, even when your server has multiple
network interfaces or hostnames. However, sometimes it is required to override these URLs, for
example when using deegree behind a proxy or load balancer. Those URLs are displayed in the DCP
HTTP element of the service capabilites.

(r') If you don’t have a proxy setup that requires it, don’t configure the reported URLs.
- In standard setups, the default behaviour works best.

To override the reported URLs, put a fragment like the following into the main.xml:

<ReportedUrls>
<Services>http://www.mygeoportal.com/ows</Services> @
<Resources>http://www.mygeoportal.com/ows-resources</Resources> @
</ReportedUrls>

1. By configurating the URL in Services, deegree would report http:/www.mygeoportal.com/ows as
service endpoint URL in the capabilities responses, regardless of the real connection details of
the deegree server. If a specific service is contacted on the deegree server, for example via a
request to http:/realnameofdeegreemachine:8080/deegree-webservices/services/inspire-wfs-ad,
deegree would report http://www.mygeoportal.com/ows/inspire-wfs-ad.

108

http://www.mygeoportal.com/ows
http://realnameofdeegreemachine:8080/deegree-webservices/services/inspire-wfs-ad
http://www.mygeoportal.com/ows/inspire-wfs-ad

2. The URL configured by Resources relates to the reported URL of the resources servlet, which
allows to access parts of the active deegree workspace via HTTP. Currently, this is only used in
WES DescribeFeatureType responses that access GML application schema directories.

The URLs changed by this configuration option are overwritten by the URL specified by the X-
Forwarded-Host, X-Forwarded-Port and X-Forwarded-Proto header values. For example via a
request to http:/realnameofdeegreemachine:8080/deegree-webservices/services/inspire-wfs-ad and
the specified header values

* X-Forwarded-Host = www.mysecondgeoportal.com
* X-Forwarded-Port = 8088
* X-Forwarded-Proto = https

deegree would report https:/www.mysecondgeoportal.com:8088/deegree-webservices/services/
inspire-wfs-ad. The URL path is kept as in the request URL. Host, port and protocol are replaced by
the values from the header. If X-Forwarded-Port or X-Forwarded-Proto are missing the values are
taken from the request URL, deegree would report http:/www.mysecondgeoportal.com/deegree-
webservices/services/inspire-wfs-ad. This behaviour is useful when the deegree webservice can be
requested via different URLs.

5.7.2. Request timeouts

By default, the execution time of a request to a web service is not constrained. It depends on the
complexity of the request and the configuration — it’s well possible to create a WMS configuration
and a GetMap request that will require hours of processing time. Generally, it is the responsibility
of the configuration creator to ensure that service requests will return in a reasonable time (e.g. by
applying scale limitations in the layer configuration).

Nevertheless, it is sometimes desirable to enforce an execution time limit. This can be achieved by
using the RequestTimeoutMilliseconds option:

<RequestTimeoutMilliseconds serviceld="wms1" request="GetMap">
1000</RequestTimeoutMilliseconds>

<RequestTimeoutMilliseconds serviceld="wms2" request="GetMap">
2500</RequestTimeoutMilliseconds>

This example enforces the following time-out behaviour:

* GetMap requests to WMS instance wms1 will be interrupted after an execution time of 1000
milliseconds

* GetMap requests to WMS instance wms2 will be interrupted after an execution time of 2500
milliseconds

Besides the time-out value in milliseconds, the following sub-options are supported by
RequestTimeoutMilliseconds:

109

http://realnameofdeegreemachine:8080/deegree-webservices/services/inspire-wfs-ad
https://www.mysecondgeoportal.com:8088/deegree-webservices/services/inspire-wfs-ad
https://www.mysecondgeoportal.com:8088/deegree-webservices/services/inspire-wfs-ad
http://www.mysecondgeoportal.com/deegree-webservices/services/inspire-wfs-ad
http://www.mysecondgeoportal.com/deegree-webservices/services/inspire-wfs-ad

Option Cardinality Value Description
@serviceld 1 String Resource identifier of the service

@request 1 String Service request

A time-out value can be configured for any service type and request. However, a

o correct termination of requests requires that the relevant Java code is actually
interruptible. So far, this has only been verified for GetMap requests to WMS
based on feature layers.

110

Chapter 6. Feature stores

Feature stores are workspace resources that provide access to stored features. The two most
common use cases for feature stores are:

* Accessing via Web Feature Service (WES)

* Providing of data for Feature layers

The remainder of this chapter describes some relevant terms and the feature store configuration
files in detail. You can access this configuration level by clicking feature stores in the
administration console. The corresponding resource configuration files are located in subdirectory
datasources/feature/ of the active deegree workspace directory.

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 39. Feature store resources provide access to geo objects

6.1. Features, feature types and application schemas

Features are abstractions of real-world objects, such as rivers, buildings, streets or state boundaries.
They are the geo objects of a particular application domain.

A feature types defines the data model for a class of features. For example, a feature type River
could define a class of river features that all have the same properties.

6.1.1. Simple vs. rich features and feature types

Some feature types have a more complex structure than others. Traditionally, GIS software copes
with "simple" feature types:

» Every property is either simple (string, number, date, etc.) or a geometry

* Only a single property with one name is allowed

Basically, a simple feature type is everything that can be represented using a single database table
or a single shape file. In contrast, "rich" feature types additionally allow the following:

111

Multiple properties with the same name
* Properties that contain other features
* Properties that reference other features or GML objects

* Properties that contain GML core datatypes which are not geometries (e.g. code types or units of
measure)

» Properties that contain generic XML

Example of a rich feature instance encoded in GML

<ad:Address gml:id="AD_ADDRESS_b15cd863-1b47-4f3c-9cd5-d5283d674a2b">
<ad:inspireld>
<base:Identifier xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2">
<base:localld>0532200000000003</base:localld>
<base:namespace>NL.KAD.BAG</base:namespace>
</base:Identifier>
</ad:inspireld>
<ad:position>
<ad:GeographicPosition>
<ad:qgeometry>
<gml:Point gml:id="POINT_64fae7bf-a836-44af-ab3c-349bed1c6f55" srsName=
"urn:ogc:def:crs:EPSG::4258">
<gml:pos>52.689618 5.246345</gml:pos>
</gml:Point>
</ad:geometry>
<ad:specification>entrance</ad:specification>
<ad:method>byOtherParty</ad:method>
<ad:default>true</ad:default>
</ad:GeographicPosition>
</ad:position>
<ad:locator>
<ad:AddressLocator>
<ad:designator>
<ad:LocatorDesignator>
<ad:designator>1</ad:designator>
<ad:type>2</ad:type>
</ad:LocatorDesignator>
</ad:designator>
<ad:level>unitlLevel</ad:level>
</ad:AddressLocator>
</ad:locator>
<ad:validFrom>2009-01-05723:00:00.000</ad:validFrom>
<ad:validTo0>2299-12-30T723:00:00.000</ad:validTo>
<ad:beginLifespanVersion xsi:nil="true" nilReason="UNKNOWN" />
<ad:endLifespanVersion xsi:nil="true" nilReason="UNKNOWN" />
<ad:component xlink:href="#FEATURE_d4a54e57-91cd-410d-9c3d-b0fafdaad80f" />
<ad:component xlink:href="#FEATURE_240b3dd2-fc1c-448e-82a4-210cffebdd34" />
<ad:component xlink:href="#FEATURE_64f481f4-8321-4474-8efd-28d01db5e2e3" />
</ad:Address>

112

o All deegree feature stores support simple feature types, but only the SQL feature
store and the memory feature store support rich feature types.

6.1.2. Application schemas

An application schema defines a number of feature types for a particular application domain.
When referring to an application schema, one usually means a GML application schema that
defines a hierarchy of rich feature types. Examples for GML application schemas are:

INSPIRE Data Themes (Annex I, IT and III)
* GeoSciML

CityGML

XPlanung
* AAA

The following diagram shows a part of the INSPIRE Annex I application schema in UML form:

Figure 40. Part of INSPIRE Annex I application schema

o The SQL feature store or the memory feature store can be used with GML
application schemas.

6.2. Shape feature store

The shape feature store serves a feature type from an ESRI shape file. It is currently not transaction
capable and only supports simple feature types.

113

6.2.1. Minimal configuration example
The only mandatory element is File. A minimal valid configuration example looks like this:
Shape Feature Store config (minimal configuration example)
<ShapeFeatureStore
xmlns="http://www.deegree.org/datasource/feature/shape"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/datasource/feature/shape
https://schemas.deegree.org/core/3.6/datasource/feature/shape/shape.xsd">

<!-- Required: Path to shape file on file system (can be relative) -->
<File>/tmp/rivers.shp</File>

</ShapeFeatureStore>

This configuration will set up a feature store based on the shape file /tmp/rivers.shp with the
following settings:

The feature store offers the feature type app:rivers (app bound to http://www.deegree.org/app)

SRS information is taken from file /tmp/rivers.prj (if it does not exist, EPSG:4326 is assumed)

* The geometry is added as property app:GEOMETRY

All data columns from file /tmp/rivers.dbf are used as properties in the feature type
* Encoding of text columns in /tmp/rivers.dbf is guessed based on actual contents

* An alphanumeric index is created for the dbf to speed up filtering based on non-geometric
constraints

6.2.2. More complex configuration example
A more complex example that uses all available configuration options:

Shape Feature Store config (more complex configuration example)

114

http://www.deegree.org/app

<ShapeFeatureStore

xmlns="http://www.deegree.org/datasource/feature/shape"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/shape
https://schemas.deegree.org/core/3.6/datasource/feature/shape/shape.xsd">
<StorageCRS>EPSG:4326</StorageCRS>
<FeatureTypeName>River</FeatureTypeName>
<FeatureTypeNamespace>http://www.deegree.org/app</FeatureTypeNamespace>
<FeatureTypePrefix>app</FeatureTypePrefix>
<File>/tmp/rivers.shp</File>
<Encoding>IS0-8859-1</Encoding>
<GenerateAlphanumericIndexes>false</GenerateAlphanumericIndexes>
<Mapping>
<SimpleProperty name="objectid" mapping="0BJECTID" />
<GeometryProperty name="mygeom" />
</Mapping>

</ShapeFeatureStore>

This configuration will set up a feature store based on the shape file /tmp/rivers.shp with the
following settings:

SRS of stored geometries is EPSG:4326 (no auto-detection)

The feature store offers the shape file contents as feature type app:River (app bound to
http://www.deegree.org/app)

Encoding of text columns in /tmp/rivers.dbfis ISO-8859-1 (no auto-detection)

No alphanumeric index is created for the dbf (filtering based on non-geometric constraints has
to be performed in-memory)

The mapping between the shape file columns and the feature type properties is customized.
Property objectid corresponds to column OBJECTID of the shape file

Property geometry corresponds to the geometry of the shape file

6.2.3. Configuration options

The configuration format for the deegree shape feature store is defined by schema file
https://schemas.deegree.org/core/3.6/datasource/feature/shape/shape.xsd. The following table lists
all available configuration options. When specifying them, their order must be respected.

Option Cardina Value Description
lity
StorageCRS 0..1 Strin CRS of stored geometries
g
FeatureTypeName 0.n Strin Local name of the feature type (defaults to base name of

g shape file)

115

http://www.deegree.org/app
https://schemas.deegree.org/core/3.6/datasource/feature/shape/shape.xsd

Option Cardina Value Description

lity

FeatureTypeNamespac 0..1 Strin Namespace of the feature type (defaults to
e g "http://www.deegree.org/app")
FeatureTypePrefix 0..1 Strin Prefix of the feature type (defaults to "app")

g
File 1.1 Strin Path to shape file (can be relative)

g
Encoding 0.1 Strin Encoding of text fields in dbf file

g
GenerateAlphanumeri 0..1 Boole Set to true, if an index for alphanumeric fields should be
cIndexes an generated
Mapping 0.1 Comp Customized mapping between dbf column names and

lex property names

6.3. Memory feature store

The memory feature store serves feature types that are defined by a GML application schema and
are stored in memory. It is transaction capable and supports rich GML application schemas.

6.3.1. Minimal configuration example
The only mandatory element is GMLSchema. A minimal valid configuration example looks like this:

Memory Feature Store config (minimal configuration example)

<MemoryFeatureStore
xmlns="http://www.deegree.org/datasource/feature/memory"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/memory
https://schemas.deegree.org/core/3.6/datasource/feature/memory/memory.xsd">

<!-- Required: GML application schema file / directory to read feature types from
-->

<GMLSchema version="GML 32">
../../appschemas/inspire/annex1/addresses.xsd</GMLSchema>

</MemoryFeatureStore>

This configuration will set up a memory feature store with the following settings:

* The GML 3.2 application schema from file ../../appschemas/inspire/annex1/addresses.xsd is used
as application schema (i.e. scanned for feature type definitions)

* No GML datasets are loaded on startup, so the feature store will be empty unless an insertion is
performed (e.g. via WFS-T)

116

6.3.2. More complex configuration example
A more complex example that uses all available configuration options:

Memory Feature Store config (more complex configuration example)

<MemoryFeatureStore xmlns="http://www.deegree.org/datasource/feature/memory"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/memory
https://schemas.deegree.org/core/3.6/datasource/feature/memory/memory.xsd">
<StorageCRS>urn:ogc:def:crs:EPSG: :4258</StorageCRS>
<@MLSchema version="GML_32">../../appschemas/inspire/annex1/</GMLSchema>
<GMLFeatureCollection version="GML_32">
../../data/gml/address.gml</GMLFeatureCollection>
<GMLFeatureCollection version="GML_32">
../../data/gml/parcels.gml</GMLFeatureCollection>
</MemoryFeatureStore>

This configuration will set up a memory feature store with the following settings:
* Directory ../../appschemas/inspire/annex1/ is scanned for *xsd files. All found files are loaded as a
GML 3.2 application schema (i.e. analyzed for feature type definitions).

* Dataset file ../../data/gml/address.gml is loaded on startup. This must be a GML 3.2 file that
contains a feature collection with features that validates against the application schema.

 Dataset file .././data/gml/parcels.gml is loaded on startup. This must be a GML 3.2 file that
contains a feature collection with features that validates against the application schema.

* The geometries of loaded features are converted to urn:ogc:def:crs:EPSG::4258.

6.3.3. Configuration options

The configuration format for the deegree memory feature store is defined by schema file
https://schemas.deegree.org/core/3.6/datasource/feature/memory/memory.xsd. The following table
lists all available configuration options (the complex ones contain nested options themselves).
When specifying them, their order must be respected.

Option Cardina Value Description
lity
StorageCRS 0..1 Strin CRS of stored geometries
g
GMLSchema 1.n Strin Path/URL to GML application schema files/dirs to read
g feature types from
GMLFeatureCollection 0.n Comp Path/URL to GML feature collections documents to read

lex features from

117

https://schemas.deegree.org/core/3.6/datasource/feature/memory/memory.xsd

6.4. Simple SQL feature store

The simple SQL feature store serves simple feature types that are stored in a spatially-enabled
database, such as PostGIS. However, it’s not suited for mapping rich GML application schemas and
does not support transactions. If you need these capabilities, use the SQL feature store instead.

If you want to use the simple SQL feature store with Oracle or Microsoft SQL
(;) Server, you will need to add additional modules first. This is described in Adding
ot database modules.

6.4.1. Minimal configuration example

There are three mandatory elements: JDBCConnld, SQLStatement and BBoxStatement. A minimal
configuration example looks like this:

Simple SQL feature store config (minimal configuration example)

<SimpleSQLFeatureStore
xmlns="http://www.deegree.org/datasource/feature/simplesql”
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/simplesql
https://schemas.deegree.org/core/3.6/datasource/feature/simplesql/simplesql.xsd">

<!-- Required: Database connection -->
<JDBCConnId>connid</JDBCConnId>

<!-- Required: Query statement -->
<SQLStatement>
SELECT name, title, asbinary(the_geom) FROM some_table
WHERE the_geom && st_geomfromtext(?, -1)
</SQLStatement>

<!-- Required: Bounding box statement -->
<BBoxStatement>SELECT astext(ST_Estimated_Extent('some_table', 'the_geom')) as
bbox</BBoxStatement>

</SimpleSQLFeatureStore>

6.4.2. More complex configuration example

Simple SQL feature store config (more complex configuration example)

118

<SimpleSQLFeatureStore
xmlns="http://www.deegree.org/datasource/feature/simplesql”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/simplesql
https://schemas.deegree.org/core/3.6/datasource/feature/simplesql/simplesql.xsd">

<!-- Required: Database connection -->
<JDBCConnId>connid</JDBCConnId>

<!-- Required: Query statement -->
<SQLStatement>
SELECT name, title, asbinary(the_geom) FROM some_table
WHERE the_geom && st_geomfromtext(?, -1)
</SQLStatement>

<!-- Required: Bounding box statement -->
<BBoxStatement>SELECT astext(ST_Estimated_Extent('some_table', 'the_geom')) as
bbox</BBoxStatement>

</SimpleSQLFeatureStore>

6.4.3. Configuration options

The configuration format is defined by schema file https://schemas.deegree.org/core/3.6/datasource/
feature/simplesql/simplesql.xsd. The following table lists all available configuration options (the
complex ones contain nested options themselves). When specifying them, their order must be
respected.

Option Cardina Value Description
lity
StorageCRS 0..1 Strin CRS of stored geometries
g
FeatureTypeName 0.n Strin Local name of the feature type (defaults to table name)
g
FeatureTypeNamespac 0..1 Strin Namespace of the feature type (defaults to
e g "http://www.deegree.org/app")
FeatureTypePrefix 0.1 Strin Prefix of the feature type (defaults to "app")
g
JDBCConnld 1.1 Strin Identifier of the database connection
g
SQLStatement 1.1 Strin SELECT statement that defines the feature type
g
BBoxStatement 1.1 Strin SELECT statement for the bounding box of the feature
g type

119

https://schemas.deegree.org/core/3.6/datasource/feature/simplesql/simplesql.xsd
https://schemas.deegree.org/core/3.6/datasource/feature/simplesql/simplesql.xsd

Option Cardina Value Description
lity
LODStatement 0.n Comp Statements for specific WMS scale ranges
lex

6.5. SQL feature store

The SQL feature store allows to configure highly flexible mappings between feature types and
database tables. It can be used for simple mapping tasks (mapping a single database table to a
feature type) as well as sophisticated ones (mapping a complete INSPIRE Data Theme to dozens or
hundreds of database tables). As an alternative to relational mapping, it additionally offers so-
called BLOB mapping which stores any kind of rich feature using a fixed and very simple database
schema. In contrast to the simple SQL feature store, the SQL feature store is transaction capable
(even for complex mappings) and ideally suited for mapping rich GML application schemas.

SQLFeatureStore configurations can be filed in subdirectories. To reference a
(;) feature store the id must include the directory. Example: 'dir/featureStore' if the
' SQLFeatureStore configuration file 'featureStore.xml' is filed in the directory 'dir".

6.5.1. Minimal configuration example
A very minimal valid configuration example looks like this:

SQL feature store: Minimal configuration

<SQLFeatureStore
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/sql
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd">
<JDBCConnId>postgis</IDBCConnId>
<FeatureTypeMapping table="country"/>

</SQLFeatureStore>

This configuration defines a SQL feature store resource with the following properties:

* JDBC connection resource with identifier postgis is used to connect to the database
* A single table (country) is mapped

» Feature type is named app:country (app=http://www.deegree.org/app)

* Properties of the feature type are automatically derived from table columns

* Every primitive column (number, string, date) is used as a primitive property

* Every geometry column is used as a geometry property (storage CRS is determined
automatically, inserted geometries are transformed by deegree, if necessary)

Feature id (gml:id) is based on primary key column, prefixed by COUNTRY_

120

» For insert transactions, it is expected that the database generates new primary keys value
automatically (primary key column must have a trigger or a suitable type such as SERIAL in
PostgreSQL)

6.5.2. More complex configuration example
A more complex example:

SQL feature store: More complex configuration

<SQLFeatureStore xmlns="http://www.deegree.org/datasource/feature/sql" xmlns:xlink=
"http://www.w3.0rg/1999/x1ink"
xmlns:base="urn:x-inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/sql
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd">
<JDBCConnId>inspire</JDBCConnId>
<StorageCRS srid="-1" dim="2D">EPSG:4258</StorageCRS>
<@MLSchema>../../appschemas/inspire/annex1/Addresses.xsd</GMLSchema>
<GMLSchema>../../appschemas/inspire/annex1/AdministrativeUnits.xsd</GMLSchema>
<GMLSchema>../../appschemas/inspire/annex1/CadastralParcels.xsd</GMLSchema>

<FeatureTypeMapping name="ad:Address" table="ad_address">
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" type="string" />
<UUIDGenerator />
</FIDMapping>
<Complex path="ad:inspireld">
<Complex path="base:Identifier">
<Primitive path="base:localld" mapping="1localid" />
<Primitive path="base:namespace" mapping=""'NL.KAD.BAG'" />
</Complex>
</Complex>
<Complex path="ad:position">
<Join table="ad_address_ad_position" fromColumns="fid" toColumns="fk" />
<Complex path="ad:GeographicPosition">
<Complex path="ad:geometry">
<Geometry path="." mapping="value" />
</Complex>
<Complex path="ad:specification">
<Primitive path="text()" mapping="'entrance'" />
</Complex>
<Complex path="ad:method">
<Primitive path="text()" mapping=""'byOtherParty'" />
</Complex>
<Primitive path="ad:default" mapping=""true'" />
</Complex>
</Complex>

121

<Complex path="ad:locator">
<Join table="ad_address_ad_locator" fromColumns="attr_gml_id" toColumns=
"parentfk" orderColumns="num"
numbered="true" />
<Complex path="ad:AddressLocator">
<Complex path="ad:designator">
<Join table="ad_address_ad_locator_ad_addresslocator_ad_designator"
fromColumns="1d" toColumns="parentfk"
orderColumns="num" numbered="true" />
<Complex path="ad:LocatorDesignator">
<Primitive path="ad:designator" mapping=
"ad_addresslocator_ad_locatordesignator_ad_designator" />
<Complex path="ad:type">
<Primitive path="text()" mapping=
"ad_addresslocator_ad_locatordesignator_ad_type" />
<Primitive path="@codeSpace" mapping=
"ad_addresslocator_ad_locatordesignator_ad_type_attr_codespace" />
</Complex>
</Complex>
</Complex>
<Complex path="ad:level">
<Primitive path="text()" mapping="ad_addresslocator_ad_level" />
<Primitive path="@codeSpace" mapping=
"ad_addresslocator_ad_level_attr_codespace" />
</Complex>
</Complex>
</Complex>
<Complex path="ad:validFrom">
<Primitive path="text()" mapping="ad_validfrom" />
<Primitive path="@nilReason" mapping="ad_validfrom_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_validfrom_attr_xsi_nil" />
</Complex>
<Complex path="ad:validTo">
<Primitive path="text()" mapping="ad_validto" />
<Primitive path="@nilReason" mapping="ad_validto_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_validto_attr_xsi_nil" />
</Complex>
<Complex path="ad:beginLifespanVersion">
<Primitive path="text()" mapping="ad_beginlifespanversion" />
<Primitive path="@nilReason" mapping="ad_beginlifespanversion_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_beginlifespanversion_attr_xsi_nil" />
</Complex>
<Complex path="ad:endLifespanVersion">
<Primitive path="text()" mapping="ad_endlifespanversion" />
<Primitive path="@nilReason" mapping="ad_endlifespanversion_attr_nilreason" />
<Primitive path="@xsi:nil" mapping="ad_endlifespanversion_attr_xsi_nil" />
</Complex>
<Complex path="ad:component">
<Join table="ad_address_ad_component” fromColumns="attr_gml_id" toColumns=
"parentfk" orderColumns="num"
numbered="true" />

122

<Feature path=".">
<Href mapping="href" />
</Feature>
</Complex>
</FeatureTypeMapping>

</SQLFeatureStore>

This configuration snippet defines a SQL feature store resource with the following properties:

JDBC connection resource with identifier inspire is used to connect to the database

Storage CRS is EPSG:4258, database srid is -1 (inserted geometries are transformed by deegree to
the storage CRS, if necessary)

Feature types are read from three GML schema files

A single feature type ad:Address (ad=urn:x-inspire:specification:gmlas:Addresses:3.0) is mapped
The root table of the mapping is ad_address

Feature type is mapped to several tables

Feature id (gml:id) is based on column attr_gml_id, prefixed by AD_ADDRESS__

For insert transactions, new values for column attr_gml id in the root table are created using
the UUID generator. For the joined tables, the database has to create new primary keys value
automatically (primary key columns must have a trigger or a suitable type such as SERIAL in
PostgreSQL)

6.5.3. Overview of configuration options

The SQL feature store configuration format is defined by schema file https://schemas.deegree.org/
core/3.6/datasource/feature/sql/sql.xsd. The following table lists all available configuration options
(the complex ones contain nested options themselves). When specifying them, their order must be

respected:
Option Cardina Value Description
lity
<JDBCConnld> 1 Strin Identifier of the database connection
g
<DisablePostFiltering> 0..1 Empt If present, queries that require in-memory filtering are
y rejected
<StorageCRS> 0..1 Comp CRS of stored geometries
lex
<GMLSchema> 0.n Strin Path/URL to GML application schema files/dirs to read
g feature types from
<NullEscalation> 0.1 Boole Controls the handling of NULL values on reconstruction

an from the DB

123

https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd

Option Cardina Value Description

lity
<BLOBMapping> 0..1 Comp Activates a special mapping mode that uses BLOBs for
lex storing features
<FeatureTypeMapping> 0.n Comp Mapping between a feature type and a database table

lex

The usage of these options and their sub-options is explained in the remaining sections.

6.5.4. Mapping tables to simple feature types

This section describes how to define the mapping of database tables to simple feature types. Each
<FeatureTypeMapping> defines the mapping between one table and one feature type:

SQL feature store: Mapping a single table

<SQLFeatureStore

xmlns="http://www.deegree.org/datasource/feature/sql"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/datasource/feature/sql
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd">

<JDBCConnId>postgis</JDBCConnId>

<FeatureTypeMapping table="country"/>

</SQLFeatureStore>

This example assumes that the database contains a table named country within the default
database schema (for PostgreSQL public). Alternatively, you can qualify the table name with the
database schema, such as public.country. The feature store will try to automatically determine the
columns of the table and derive a suitable feature type:

» Feature type name: app:country (app=http://www.deegree.org/app)

Feature id (gml:id) based on primary key column of table country
* Every primitive column (number, string, date) is used as a primitive property

* Every geometry column is used as a geometry property

A single configuration file may map more than one table. The following example defines two
feature types, based on tables country and cities.

SQL feature store: Mapping two tables

124

<SQLFeatureStore
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/sql
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd">
<JDBCConnId>postgis</IDBCConnId>
<FeatureTypeMapping table="country"/>
<FeatureTypeMapping table="city"/>

</SQLFeatureStore>

There are several options for <FeatureTypeMapping> that give you more control over the derived
feature type definition. The following table lists all available options (the complex ones contain
nested options themselves):

Option Cardinal Value Description
ity
table 1 String Name of the table to be mapped (can be qualified with
database schema)
name 0.1 QNam Name of the feature type
e
<FIDMapping> 0..1 Compl Defines the mapping of the feature id
ex
<OrderBy> 0.1 Compl Defines the default sort order of a feature collection
ex
<Primitive> 0.n Compl Defines the mapping of a primitive-valued column
ex
<Geometry> 0.n Compl Defines the mapping of a geometry-valued column
ex
o The order of child elements <Primitive> and <Geometry> is not restricted. They
may appear in any order.

These options and their sub-options are explained in the following subsections.

Customizing the feature type name

By default, the name of a mapped feature type will be derived from the table name. If the table is
named country, the feature type name will be app:country (app=http://www.deegree.org/app). The
name attribute allows to set the feature type name explicitly. In the following example, it will be
app:Land (Land is German for country).

SQL feature store: Customizing the feature type name

125

<FeatureTypeMapping table="country" name="Land"/>

The name of a feature type is always a qualified XML name. You can use standard XML namespace
binding mechanisms to control the namespace and prefix of the feature type name:

SQL feature store: Customizing the feature type namespace and prefix

<FeatureTypeMapping xmlns:myns="http://mydomain.org/myns" table="country" name=
"myns:Land"/>

Customizing the feature id

By default, values for the feature id (gmlid attribute in GML) will be based on the primary key
column of the mapped table. Values from this column will be prepended with a prefix that is
derived from the feature type name. For example, if the feature type name is app:Country, the
prefix is APP_COUNTRY. The feature instance that is built from the table row with primary key 42
will have feature id APP._ COUNTRY42.

If this is not what you want, or automatic detection of the primary key column fails, customize the
feature id mapping using the <FIDMapping> option:

SQL feature store: Customizing the feature id mapping

<FeatureTypeMapping table="country">
<FIDMapping prefix="C_">
<Column name="fid" />
</FIDMapping>
</FeatureTypeMapping>

Here are the options for <FIDMapping>:

Option Cardinal Value Description
ity
prefix 0.1 String Feature id prefix, default: derived from feature type name
<Column> 1.n Compl Column that stores (a part of) the feature id
ex

As <Column> may occur more than once, you can define that the feature id is constructed from
multiple columns:

126

SQL feature store: Customizing the feature id mapping

<FeatureTypeMapping table="country">
<FIDMapping prefix="C_">
<Column name="key1" />
<Column name="key2" />
</FIDMapping>
</FeatureTypeMapping>

Here are the options for <Column>:

Option Cardinal Value Description
ity
name 1 String Name of the database column
type 0..1 String Column type (string, boolean, decimal, double or integer),

default: auto

Technically, the feature id prefix is important to determine the feature type when
o performing queries by feature id. Every <FeatureTypeMapping> must have a
unique feature id prefix.

Customizing the default sort order of features

By default, the sort order of the features returned is given by the underlying database. To configure
a defined sort order the <OrderBy> element can be used. The configuration applies to simple
properties only. It is possible to define multiple properties and if sorting should be ascending or
descending. If this configuration is applied it is mapped to a SQL ORDER BY clause and a collection
of features is returned in a defined sort order. The defined sort order can be overwritten when
clients use the WFS GetFeature request parameter SORTBY.

<0rderBy>
<!-- ascending sort order by default-->
<Column name="prop1" />

<!-- descending sort order -->
<Column name="prop2" sortOrder="DESC" />
</0OrderBy>

Here are the options for <OrderBy>:

127

Option Cardinal Value Description
ity
Column 0.n Compl Settings of a column describing the sort order
ex

Here are the options for <Column>:

Option Cardinal Value Description

ity
name 1 String Name of the database column
sortOrder 0.1 String sort order (ASC, DESC), default: ASC

Customizing the mapping between columns and properties

By default, the SQL feature store will try to automatically determine the columns of the table and
derive a suitable feature type:

* Every primitive column (number, string, date) is used as a primitive property

* Every geometry column is used as a geometry property
If this is not what you want, or automatic detection of the column types fails, use <Primitive> and

<Geometry> to control the property definitions of the feature type and the column-to-property
mapping:

SQL feature store: Customizing property definitions and the column-to-property mapping

<FeatureTypeMapping table="country">
<Primitive path="property1" mapping="prop1" type="string"/>
<Geometry path="property2" mapping="the_geom" type="Point">
<StorageCRS srid="-1">EPSG:4326</StorageCRS>
</Geometry>
<Primitive path="property3" mapping="prop2" type="integer"/>
</FeatureTypeMapping>

This example defines a feature type with three properties:

» propertyl, type: primitive (string), mapped to column prop1

* propertyZ2, type: geometry (point), mapped to column the_geom, storage CRS is EPSG:4326,
database srid is -1

* property3, type: primitive (integer), mapped to column prop2

The following table lists all available configuration options for <Primitive> and <Geometry>:

128

Option Cardinal Value Description

ity

path 1 QNa Name of the property

me
mapping 1 Strin Name of the database column

g
type 1 Strin Property/column type

g
<Join> 0..1 Comp Defines a change in the table context

lex
<CustomConverter 0..1 Comp Plug-ins a specialized DB-to-ObjectModel converter
> lex implementation
<StorageCRS> 0..1 Comp CRS of stored geometries and database srid (only for

lex <Geometry>)

If your configuration file is stored in UTF-8 encoding deegree allows special chars
o from this charset in the mapping (e.g. the property Strafse can be stored in the
column 'strasse’ or 'strafde’). Required is that the database supports UTF-8 as well.

Since <CustomConverter> plug-ins require specific knowledge about the used
o database, drivers and configuration, these are described in the appendix at Custom
converters for the SQL feature store.

6.5.5. Mapping GML application schemas

The former section assumed a mapping configuration that didn’t use a given GML application
schema. If a GML application schema is available and specified using <GMLSchema>, the mapping
possibilities and available options are extended. We refer to these two modes as table-driven
mode (without GML schema) and schema-driven mode (with GML schema).

Here’s a comparison of table-driven and schema-driven mode:

Table-driven mode Schema-driven mode
GML application schema Derived from tables Must be provided
Data model (feature types) Derived from tables Derived from GML app schema
GML version Any (GML 2, 3.0, 3.1, 3.2) Fixed to version of app schema
Mapping principle Property to table column XPath-based or BLOB-based
Supported mapping complexity Low Very high

129

If you want to create a relational mapping for an existing GML application schema
(e.g. INSPIRE Data Themes, GeoSciML, CityGML, XPlanung, AAA), always copy the
schema files into the appschemas/ directory of your workspace and reference the

o schema in your configuration. You can use tools such as schema-fetcher to retrieve
all schema files and store them locally. You may need to adjust include and import
elements to apply the local file references. The schemas from
https://schemas.opengis.net/ (downloaded at 2023-05-12) are already provided
internally and must not be stored locally.

In schema-driven mode, the SQL feature store extracts detailed feature type definitions and
property declarations from GML application schema files. A basic configuration for schema-driven
mode defines the JDBC connection id, the general CRS of the stored geometries and one or more
GML application schema files:

SQL FeatureStore (schema-driven mode): Skeleton config

<SQLFeatureStore
xmlns="http://www.deegree.org/datasource/feature/sql"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/feature/sql
https://schemas.deegree.org/core/3.6/datasource/feature/sql/sql.xsd">

<JDBCConnId>postgis</IDBCConnId>
<StorageCRS dim="2D" srid="-1">EPSG:4258</Storage(RS>
<@MLSchema>../../appschemas/inspire/annex1/ad_address.xsd</GMLSchema>

</SQLFeatureStore>

Recommended workflow

Manually creating a mapping for a rich GML application schema may appear to be a daunting task
at first sight. Especially when you are still trying to figure out how the configuration concepts work,
you will be using a lot of trial-and-error. Here are some general practices to make this as painless as
possible.

* Map one property of a feature type at a time.

* Use the Reload link in the administration console to activate changes.

 After changing the configuration file, make sure that the status of the feature store stays green
(in the administration console). If an exclamation mark occurs, you have an error in your
configuration. Check the error message and fix it.

* Check the results of your change (see below)
* Once you’re satisfied, move on to the next property (or feature type)
Set up a WFS configuration, so you can use WFS GetFeature-requests to check whether your feature

mapping works as expected. You can use your web browser for that. After each configuration
change, perform a GetFeature-request to see the effect. Suitable WFS requests depend on the WFS

130

https://github.com/mfalaize/schema-fetcher
https://schemas.opengis.net/

version, the GML version and the name of the feature type. Here are some examples:

* WFS 1.00 (GML 2): http:/localhost:8080/deegree-webservices/services?service=WFS&
version=1.0.0&request=GetFeature&typeName=ad:Address&maxFeatures=1

* WFS 1.1.0 (GML 3.1): http://localhost:8080/deegree-webservices/services?service=WFS&
version=1.1.0&request=GetFeature&typeName=ad:Address&maxFeatures=1

* WEFS 2.0.0 (GML 3.2): http://localhost:8080/deegree-webservices/services?service=WFS&
version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

In order to successfully create a mapping for a feature type from a GML application schema, you
have to know the structure and the data types of the feature type. For example, if you want to map
feature type ad:Address from INSPIRE Annex I, you have to know that it has a required property
called ad:inspireld that has a child element with name base:Identifier. Here’s a list of possible
options to learn the data model of an application schema:

* Manually (or with the help of a generic XML tool such as XMLSpy) analyze the GML application
schema to determine the feature types and understand their data model

* Use the deegree support options (mailing lists, commercial support) to get help.

The deegree project aims for a user-interface to help with all steps of creating
o mapping configurations. If you are interested in working on this (or funding it),
don’t hesitate to contact the project bodies.

Mapping rich feature types

In schema-driven mode, the <FeatureTypeMapping> element basically works as in table-driven
mode (see Mapping tables to simple feature types). It defines a mapping between a table in the
database and a feature type. However, there are additional possibilities, and it’s usually more
suitable to focus on feature types and XML nodes instead of tables and table columns. Here’s an
overview of the <FeatureTypeMapping> options and their meaning in schema-driven mode:

Option Cardinal Value Description
ity
table 1 String Name of the table to be mapped (can be qualified with
database schema)

name 0..1 QNam Name of the feature type
e

<FIDMapping> 1 Compl Defines the mapping of the feature id
ex

<Primitive> 0.n Compl Defines the mapping of a primitive-valued node
ex

<Geometry> 0.n Compl Defines the mapping of a geometry-valued node
ex

<Complex> 0.n Compl Defines the mapping of a complex-valued node
ex

131

http://localhost:8080/deegree-webservices/services?service=WFS&version=1.0.0&request=GetFeature&typeName=ad:Address&maxFeatures=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=1.0.0&request=GetFeature&typeName=ad:Address&maxFeatures=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=1.1.0&request=GetFeature&typeName=ad:Address&maxFeatures=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=1.1.0&request=GetFeature&typeName=ad:Address&maxFeatures=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

Option Cardinal Value Description

ity
<Feature> 0.n Compl Defines the mapping of a feature-valued node
ex
o The order of child elements <Primitive>, <Geometry>, <Complex> and <Feature> is
not restricted. They may appear in any order.

We’re going to explore the additional options by describing the necessary steps for mapping feature
type ad:Address (from INSPIRE Annex I) to an example database. Start with a single
<FeatureTypeMapping>. Provide the table name and the mapping for the feature identifier. The
example uses a table named ad_address and a key column named fid:

SQL feature store (schema-driven mode): Start configuration

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>
<Column name="fid" />
</FIDMapping>
</FeatureTypeMapping>

(r) In schema-driven mode, there is no automatic detection of columns, column types
- or primary keys. You always have to specify <FIDMapping>.

If this configuration matches your database and you have a working WFS
(r) resource, you should be able to query the feature type (although no properties will
- be returned): http://localhost:8080/deegree-webservices/services?service=WFS&

version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

Mapping rich feature types works by associating XML nodes of a feature instance with rows and
columns in the database. The table context (the current row) is changed when necessary. In the
beginning of a <FeatureTypeMapping>, the current context node is an ad:Address element and the
current table context is a row of table ad_address. The first (required) property that we’re going to
map is ad:inspireld. The schema defines that ad:inspireld has as child element named base:Identifier
which in turn has two child elements named base:localld and base:namespace. Let’s assume that we
have a column localid in our table, that we want to map to base:localld, but for base:namespace, we
don’t have a corresponding column. We want this element to have the fixed value NL.KAD.BAG for
all instances of ad:Address. Here’s how to do it:

SQL feature store (schema-driven mode): Complex elements and constant mappings

132

http://localhost:8080/deegree-webservices/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1
http://localhost:8080/deegree-webservices/services?service=WFS&version=2.0.0&request=GetFeature&typeName=ad:Address&count=1

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-
inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>
<Column name="fid" />
</FIDMapping>

<Complex path="ad:inspireld">
<Complex path="base:Identifier">
<Primitive path="base:localld" mapping="localid"/>
<Primitive path="base:namespace" mapping=""NL.KAD.BAG"'"/>
</Complex>
</Complex>

</FeatureTypeMapping>

There are several things to observe here. The Complex element occurs twice. In the path attribute of
the first occurrence, we specified the qualified name of the (complex) property we want to map
(ad:inspireld). The nested Complex targets child element base:Identifier of ad:inspireld. And finally,
the Primitive elements specify that child element base:localld is mapped to column localid and
element base:namespace is mapped to constant NL.KAD.BAG (note the single quotes around
NL.KAD.BAG).

To summarize:

» Complex is used to select a (complex) child element to be mapped. It is a container for child
mapping elements (Primitive, Geometry, Complex or Feature)
* In the mapping attribute of Primitive, you can also use constants, not only column names
The next property we want to map is ad:position. It contains the geometry of the address, but the
actual GML geometry is nested on a deeper level and the property can occur multiple times. In our

database, we have a table named ad_address_ad _position with columns fk (foreign key to
ad_address) and value (geometry). Here’s the extended mapping:

SQL feature store (schema-driven mode): Join elements and XPath expressions

133

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-
inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0">
<FIDMapping>
<Column name="fid" />
</FIDMapping>

<Complex path="ad:inspireld">https://xxx[]
<Complex path="base:Identifier">
<Primitive path="base:localld" mapping="localid" />
<Primitive path="base:namespace" mapping=""'NL.KAD.BAG'" />
</Complex>
</Complex>

<Complex path="ad:position">
<Join table="ad_address_ad_position" fromColumns="fid" toColumns="fk" />
<Complex path="ad:GeographicPosition">
<Complex path="ad:geometry">
<Geometry path="." mapping="value" />
</Complex>
<Complex path="ad:specification">
<Primitive path="text()" mapping="'entrance'" />
</Complex>
<Complex path="ad:method">
<Primitive path="text()" mapping=""'byOtherParty'" />
</Complex>
<Primitive path="ad:default" mapping=
</Complex>
</Complex>

true'" />

</FeatureTypeMapping>

Again, the Complex element is used to drill into the XML structure of the property and several
elements are mapped to constant values. But there are also new things to observe:

 The first child element of a <Complex> (or <Primitive>, <Geometry> or <Feature>) can be <Join>.
<Join> performs a table change: table rows corresponding to ad:position are not stored in the
root feature type table (ad_address), but in a joined table. All siblings of <join> (or their
children) refer to this joined table (ad_address_ad_position). The join condition that determines
the related rows in the joined table is ad_address.fid=ad_address_ad_position.fk. <Join> is
described in detail in the next section.

* Valid expressions for path can also be . (current node) and text() (primitive value of the current
node).

Let’s move on to the mapping of property ad:component. This property can occur multiple times
and contains (a reference to) another feature.

SQL feature store (schema-driven mode): Feature elements

134

<FeatureTypeMapping name="ad:Address" table="ad_address" xmlns:base="urn:x-
inspire:specification:gmlas:BaseTypes:3.2" xmlns:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0">
[...]
<Complex path="ad:component">
<Join table="ad_address_ad_component” fromColumns="fid" toColumns="fk"/>
<Feature path=".">
<Href mapping="href"/>
</Feature>
</Complex>
</FeatureTypeMapping>

As in the mapping of ad:position, a <Join> is used to change the table context. The table that stores
the information for ad:component properties is ad_address_ad_component. The <Feature> declares
that we want to map a feature-valued node and it’s <Href> sub-element defines that column href
stores the value of the xlink:href attribute.

Here is an overview of all options for <Complex> elements:

Option Cardinal Value Description
ity
path 1 QNa Name/XPath-expression that determines the element to be

me mapped

<Join> 0..1 Comp Defines a change in the table context
lex

<CustomConverter 0..1 Comp Plugs-in a specialized DB-to-ObjectModel converter

> lex implementation

<Primitive> 0.n Comp Defines the mapping of a primitive-valued node
lex

<Geometry> 0.n Comp Defines the mapping of a geometry-valued node
lex

<Complex> 0.n Comp Defines the mapping of a complex-valued node
lex

<Feature> 0.n Comp Defines the mapping of a feature-valued node
lex

o The order of child elements <Primitive>, <Geometry>, <Complex> and <Feature> is
not restricted. They may appear in any order.

Here is an overview on all options for <Feature> elements:

135

Option Cardinal Value Description

ity
path 1 QNa Name/XPath-expression that determines the element to be
me mapped
<CustomConverter 0..1 Comp Plugs-in a specialized DB-to-ObjectModel converter
> lex implementation
<Href> 0..1 Comp Defines the column that stores the value for xlink:href

lex

Mapping strategies for xlink:href attributes

There are two different use cases when xlink:href attributes are used:

e 1. Reference on other feature.

* 2. xlink:href value is used as static value. For example, if a user wants to filter on INSPIRE
codelists, filtering is executed on the value of xlink:href.

Case 1. does not allow filtering on the value of xlink:href itself. Case 2. allows filtering on the static
value of the xlink:href attribute but the linked feature is not resolved anymore.

Those two cases can be realized by different mappings in SQL feature store configuration:

* 1. Feature mapping is used:

<Feature path=".">
<Join table="?" fromColumns="designationtype_designation_fk" toColumns="id"/>
<Href mapping="designationtype_designation_href"/>

</Feature>

* 2. Primitive mapping is used:

<Primitive path="@xlink:href" mapping="designationtype_designation_href"/>

For more details see chapter Mapping rich feature types.

Changing the table context

At the beginning of a <FeatureTypeMapping>, the current table context is the one specified by the
table attribute. In the following example snippet, this would be table ad_address.

SQL feature store: Initial table context

136

<FeatureTypeMapping name="ad:Address" table="ad_address">
[...]
<Complex path="gml:identifier">
<Primitive path="text()" mapping="gml_identifier"/>
<Primitive path="@codeSpace" mapping="gml_identifier_attr_codespace"/>
</Complex>
[...]
</FeatureTypeMapping>

Note that all mapped columns stem from table ad_address. This is fine, as each feature can only
have a single gmlidentifier property. However, when mapping a property that may occur any
number of times, we will have to access the values for this property in a separate table.

SQL feature store: Changing the table context

<FeatureTypeMapping name="ad:Address" table="ad_address">
[...]
<Complex path="gml:identifier">
<Primitive path="text()" mapping="gml_identifier"/>
<Primitive path="@codeSpace" mapping="gml_identifier_attr_codespace"/>
</Complex>
[...]
<Complex path="ad:position">
<Join table="ad_address_ad_position" fromColumns="attr_gml_id" toColumns='
parentfk" orderColumns="num" numbered="true"/>
<Complex path="ad:GeographicPosition">
<Complex path="ad:geometry">
<Primitive path="@nilReason" mapping=
"ad_geographicposition_ad_geometry_attr_nilreason"/>
<Primitive path="@gml:remoteSchema" mapping=
"ad_geographicposition_ad_geometry_attr_gml_remoteschema"/>
<Primitive path="@owns" mapping="ad_geographicposition_ad_geometry_attr_owns"/>
<Geometry path="." mapping="ad_geographicposition_ad_geometry_value"/>
</Complex>
[...]
<Primitive path="ad:default" mapping="ad_geographicposition_ad_default"/>
</Complex>
</Complex>
[...]
</FeatureTypeMapping>

In this example, property gmlidentifier is mapped as before (the data values stem from table
ad_address). In contrast to that, property ad:position can occur any number of times for a single
ad_address feature instance. In order to reflect that in the relational model, the values for this
property have to be taken from/stored in a separate table. The feature type table (ad_address) must
have a 1:n relation to this table.

The <Join> element is used to define such a change in the table context (in other words: a

137

relation/join between two tables). A <Join> element may only occur as first child element of any of
the mapping elements (<Primitive>, <Geometry>, <Feature> or <Complex>). It changes from the
current table context to another one. In the example, the table context in the mapping of property
ad:position is changed from ad_address to ad_address_ad_position. All mapping instructions that
follow the <Join> element refer to the new table context. For example, the geometry value is taken
from ad_address_ad_position.ad_geographicposition_ad_geometry_value.

The following table lists all available options for <Join> elements:

Option Cardin Valu Description
ality e
table 1.1 Strin Name of the target table to change to.
g
fromColumns 1.1 Strin One or more columns that define the join key in the source table.
g
toColumns 1.1 Strin One or more columns that define the join key in the target table.
g
orderColumns 0..1 Strin One or more columns hat define the order of the joined rows.
g
numbered 0.1 Bool Set to true, if orderColumns refers to a single column that contains

ean natural numbers [1,2,3,...].

<AutoKeyColum 0.n Com Columns in the target table that store autogenerated keys (only
n> plex required for transactions).

Attributes fromColumns, toColumns and orderColumns may each contain one or more columns.
When specifying multiple columns, they must be given as a whitespace-separated list.
orderColumns is used to force a specific ordering on the joined table rows. If this attribute is
omitted, the order of joined rows is not defined and reconstructed feature instances may vary each
time they are fetched from the database. In the above example, this would mean that the multiple
ad:position properties of an ad:Address feature may change their order.

In case that the order column stores the child index of the XML element, the numbered attribute
should be set to true. In this special case, filtering on property names with child indexes will be
correctly mapped to SQL WHERE clauses as in the following WFS example request.

SQL feature store: WFS query with child index

138

<GetFeature version="2.0.0" service="WFS">
<Query typeNames="ad:Address">
<fes:Filter>
<fes:BBOX>
<fes:ValueReference>
ad:position[3]/ad:GeographicPosition/ad:geometry</fes:ValueReference>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4258">
<gml:lowerCorner>52.691 5.244</gml:1lowerCorner>
<gml:upperCorner>52.711 5.245</gml:upperCorner>
</gml:Envelope>
</fes:BBOX>
</fes:Filter>
</Query>
</GetFeature>

In the above example, only those ad:Address features will be returned where the geometry in the
third ad:position property has an intersection with the specified bounding box. If only other
ad:position properties (e.g. the first one) matches this constraint, they will not be included in the
output.

The <AutoKeyColumn> configuration option is only required when you want to use transactions on
your feature store and your relational model is non-canonical. Ideally, the mapping will only
change the table context in case the feature type model allows for multiple child elements at that
point. In other words: if the XML schema has maxOccurs set to unbounded for an element, the
relational model should have a corresponding 1:n relation. For a 1:n relation, the target table of the
context change should have a foreign key column that points to the primary key column of the
source table of the context change. This is important, as the SQL feature store has to propagate keys
from the source table to the target table and store them there as well.

If the joined table is the origin of other joins, than it is important that the SQL feature store can
generate primary keys for the join table. If not configured otherwise, it is assumed that column id
stores the primary key and that the database will auto-generate values on insert using database
mechanisms such as sequences or triggers.

If this is not the case, use the AutoKeyColumn options to define the columns that make up the
primary key in the join table and how the values for these columns should be generated on insert.
Here’s an example:

SQL feature store: Key propagation for transactions

139

[...]
<Join table="B" fromColumns="id" toColumns="parentfk" orderColumns="num" numbered=
"true">
<AutoKeyColumn name="pk1">
<UUIDGenerator />

</AutoKeyColumn>
[...]
<Join table="C" fromColumns="pk1" toColumns="parentfk" />
[...]
</Join>
[...]

In this example snippet, the primary key for table B is stored in column pkl and values for this
column are generated using the UUID generator. There’s another change in the table context from B
to C. Rows in table C have a key stored in column parentfk that corresponds to the B.pk1. On insert,
values generated for B.pkl will be propagated and stored for new rows in this table as well. The
following table lists the options for <AutoKeyColumn> elements.

Inside a <AutoKeyColumn>, you may use the same Kkey generators that are available for feature id
generation (see above).

Handling of NULL values

By default, a NULL value in a mapped database column means that just the mapped particle is
omitted from the reconstructed feature. However, if the corresponding element/attribute or text
node is required according to the GML application schema, this will lead to invalid feature
instances. In order to deal with this, the global option <NullEscalation> should be set to true after
the mapping configuration has been finished.

SQL feature store: Activating NULL value escalation

[...]
<NullEscalation>true</NullEscalation>
[...]

If this option is turned on and a NULL value is found in a mapped column, the following strategy is
applied:

* If the corresponding particle is not required according to the GML application schema, just this
particle is omitted.

« If the container element of the particle is nillable according to the GML application schema, the
xsi:nil attribute of the element is set to true.

* In all other cases, the NULL is escalated to the container element using the same strategy (until
the feature level has been reached).

This works well most of the time, but sometimes, it can be handy to override this behaviour. For
that, each <Primitive>, <Complex>, <Geometry> or <Feature> configuration element supports the

140

optional attribute nullEscalation. The following config snippet demonstrates a custom NULL
escalation for element gml:endPosition. By default, the content of this element is required, but by
setting it to false, NULL escalation can be manually switched off for this very particle.

SQL feature store: Customizing NULL value escalation

[...]
<Complex path="gml:TimePeriod">
<Complex path="gml:beginPosition">
<Primitive path="text()" mapping="begin_position"/>
</Complex>
<Complex path="gml:endPosition">
<Primitive path="@indeterminatePosition" mapping=
"end_position_indeterminate_position"/>
<Primitive path="text()" mapping="end_position" nullEscalation="false"/>
</Complex>
</Complex>

[...]

The following values are supported for attribute nullEscalation on <Primitive>, <Complex>,
<Geometry> or <Feature> elements:

* auto: Handling of NULL values is derived from the GML application schema. Same as omitting
the nullEscalation attribute.
* true: NULL values are escalated to the container element.

* false: NULL values are not escalated to the container element.

BLOB mapping

An alternative approach to mapping each feature type from an application schema using
<FeatureTypeMapping> is to specify a single <BLOBMapping> element. This activates a different
storage strategy based on a fixed database schema. Central to this schema is a table that stores
every feature instance (and all of it’s properties) as a BLOB (binary large object).

Here is an overview on all options for <BLOBMapping> elements:

Option Cardina Value Description
lity
<BlobTable> 0.1 Strin Database table that stores features, default: gml objects
g
<FeatureTypeTable> 0..1 Strin Database table that stores feature types, default:

g feature_types

The central table (controlled by <BlobTable>) uses the following columns:

Column PostGIS type Used for

id serial Primary key

141

Column PostGIS type Used for

gml id text Feature identifier (used for id queries and resolving xlink
references)

gml_bounded_by geometry Bounding box (used for spatial queries)
ft_type smallint Feature type identifier (used to narrow the result set)

binary_object bytea Encoded feature instance

The other table (controlled by <FeatureTypeTable>) stores a mapping of feature type names to
feature type identifiers:

Column PostGIS type Used for

id smallint Primary key
gname text Name of the feature type
bbox geometry Aggregated bounding box for all features of this type

In order for <BLOBMapping> to work, you need to have the correct tables in your
o database and initialize the feature type table with the names of all feature types
you want to use.

o You may wonder how to get data into the database in BLOB mode. As for standard
mapping, you can do this by executing WFS-T requests.

In BLOB mode, only spatial and feature id queries can be mapped to SQL WHERE-
o constraints. All other kinds of filter conditions are performed in memory. See
Evaluation of query filters for more information.

It is not recommended to mix GML versions in BLOB mode: The GML versions

o supported by WFS should be limited to the GML version of the features in the
FeatureStore. Currently it cannot be ensured, that geometries transformed to
another GML version are valid against the schema.

6.5.6. Transactions and feature id generation

The mapping defined by a <FeatureTypeMapping> element generally works in both directions:

» Table-to-feature-type (query): Feature instances are created from table rows

* Feature-type-to-table (insert): New table rows are created for inserted feature instances

However, there’s a caveat for inserts: The SQL feature store has to know how to obtain new and
unique feature ids.

When features are inserted into a SQL feature store (for example via a WFS transaction), the client
can choose between different id generation modes. These modes control whether feature ids (the
values in the gml:id attribute) have to be re-generated. There are three id generation modes

142

available, which directly relate to the WFS 1.1.0 specification:

» UseExisting: The feature store will use the original gml:id values that have been provided in the
input. This may lead to errors if the provided ids are already in use or if the format of the id
does not match the configuration.

* GenerateNew: The feature store will discard the original gml:id values and use the configured
generator to produce new and unique identifiers. References in the input (xlink:href) that point
to a feature with an reassigned id are fixed as well, so reference consistency is ensured.

* ReplaceDuplicate: The feature store will try to use the original gml:id values that have been
provided in the input. If a certain identifier already exists in the database, the configured
generator is used to produce a new and unique identifier. NOTE: Support for this mode is not
implemented yet.

In a WFS 1.1.0 insert request, the id generation mode is controlled by attribute

o idGenMode. WFS 1.0.0 and WES 2.0.0 don’t support to specify it on a request basis.
However, in the deegree WFS configuration you can control it in the option
EnableTransactions.

In order to generate the required ids for GenerateNew, you can choose between different
generators. These are configured in the <FIDMapping> child element of <FeatureTypeMapping>:

Auto id generator

The auto id generator depends on the database to provide new values for the feature id column(s)
on insert. This requires that the used feature id columns are configured appropriately in the
database (e.g. that they have a trigger or a suitable column type such as SERIAL in PostgreSQL).

SQL feature store: Auto id generator example

[...]

<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<AutoIDGenerator />

</FIDMapping>

[...]

This snippet defines the feature id mapping and the id generation behaviour for a feature type
called ad:Address

* When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml id to create the
exported feature id. If attr_gml id contains the value 42 in the database, the feature instance
that is created from this row will have the value AD_ADDRESS 42.

* On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESSS$. The
prefix _AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column
attr_gml_id.

* On insert (mode=GenerateNew), the database must automatically create a new value for
column attr_gml_id which will be the postfix of the newly assigned feature id.

143

UUID generator

The UUID generator uses Java’s UUID implementation to generate new and unique identifiers. This
requires that the database column for the id is a character column that can store strings with a
length of 36 characters and that the database does not perform any kind of insertion value
generation for this column (e.g. triggers).

SQL feature store: UUID generator example

[...]

<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<UUIDGenerator />

</FIDMapping>

[...]

This snippet defines the feature id mapping and the id generation behaviour for a feature type
called ad:Address

* When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml id to create the
exported feature id. If attr_gml id contains the value 550e8400-e29b-11d4-a716-446655440000 in
the database, the feature instance that is created from this row will have the value
AD_ADDRESS_550e8400-e29b-11d4-a716-446655440000.

* On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESSS. The
prefix _AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column
attr_gml_id.

* On insert (mode=GenerateNew), a new UUID is generated and stored in column attr_gml id.

Sequence id generator

The sequence id generator queries a database sequence to generate new and unique identifiers.
This requires that the database column for the id is compatible with the values generated by the
sequence and that the database does not perform any kind of automatic value insertion for this
column (e.g. triggers).

SQL feature store: Database sequence generator example

[...]
<FIDMapping prefix="AD_ADDRESS_">
<Column name="attr_gml_id" />
<SequenceIDGenerator sequence="SEQ_FID">
</FIDMapping>
[...]

This snippet defines the feature id mapping and the id generation behaviour for a feature type
called ad:Address

144

* When querying, the prefix AD_ADDRESS_ is prepended to column attr_gml id to create the
exported feature id. If attr_gml id contains the value 42 in the database, the feature instance
that is created from this row will have the value AD_ADDRESS_42.

* On insert (mode=UseExisting), provided gml:id values must have the format AD_ADDRESSS$. The
prefix _AD_ADDRESS_ is removed and the remaining part of the identifier is stored in column
attr_gml_id.

* On insert (mode=GenerateNew), the database sequence SEQ_FID is queried for new values to be
stored in column attr_gml_id.

6.5.7. Evaluation of query filters

The SQL feature store always tries to map filter conditions (e.g. from WFS GetFeature requests or
when accessed by the WMS) to SQL-WHERE conditions. However, this is not possible in all cases.
Sometimes a filter uses an expression that does not have an equivalent SQL-WHERE clause. For
example when using BLOB mapping and the filter is not based on a feature id or a spatial
constraint.

In such cases, the SQL feature store falls back to in-memory filtering. It will reconstruct feature by
feature from the database and evaluate the filter in memory. If the filter matches, it will be
included in the result feature stream. If not, it is skipped.

The downside of this strategy is that it can put a serious load on your server. If you want to turn off
in-memory filtering completely, use <DisablePostFiltering>. If this option is specified and a filter
requires in-memory filtering, the query will be rejected.

6.5.8. Spatial extent of FeatureTypes

The spatial extent of all feature types defined in all SQLFeatureStore configurations are cached in a
file named bbox_cache.properties. The file is created when the workspace is initialised. The file
contains the bounding box with its coordinate system assigned to the qualified name of each
feature type, e.g.:

{http\://www.deegree.orq/app}Lakes=epsq\:4326,11.16,51.29,14.83,53.59
{http\://www.deegree.org/app}Railroads=epsq\:4326,11.16,51.29,14.83,53.59

Inserting new features via WFS-T results in an increased bounding box in the bbox_cache.properties
file, if the extent did not include the features. The file can also be used to configure the bounding
box to a larger extent than the data, e.g. if the extent is already known but not all data imported.
The extent of a FeatureType is written in the capabilities as WGS84BoundingBox (WFS 2.0) of the
FeatureType.

It is possible to configure a bbox_cache<FeatureStoreld>.properties_ per

(r) SQLFeatureStore, this FeatureStore specific configuration is preferred over the
bbox_cache.properties.

145

6.5.9. Auto-generating database tables

After you have created a valid deegree workspace with a database connection as well as a
FeatureStore configuration for example by using the deegree SqlFeatureStoreConfigCreator, the
Setup tables should be visible on the right side of your configured FeatureStore. Click on Setup
tables to auto-generate a SQL script for creating the required tables in the corresponding database:

Security hint: No password has been set.

Active workspace: ps-sl [Reload] [Validate]

Home Feature stores

general On INSPIRE_ProtectedSites WFS Deactivate Info Loader
workspaces On INSPIRE_ProtectedSites_WMS Deactivate Info Loader Setup tables
proxy
password Create new
module info

web services
senvices

data stores
coverage
feature
metadata
tile

map layers
layers
styles
themes

connections
databases
remote
senvices

processes
provider

Figure 41. Setup tables action

Once you clicked the Setup tables link, a preview of the generated SQL script will be presented:

Security hint: No password has been set.

Active workspace: ps-sl [Reload] [Validate]

Home Setup database

general CREATE SCHEMA IF NOT EXISTS schutzgeb;
CREATE TABLE schutzgeb.gn_namedplace (

workspaces
; g h attr_gml_id text,

|:-roxy.) gml_identifier text,
password gml_identifier_attr_codespace text,
module info gn_beginlifespanversion timestamp,

gn_beginlifespanversion_attr nilreason text,
gn_beginlifespanversion_attr_xsi nil boolean,

web services gn_endlifespanversion timestamp,

services gn_endlifespanversion attr nilreasen text,
data stores gn_endlifespanversion_attr _xsi nil boolean,
coverage gn_geometry_attr_nilreason text,
Gl gn_geometry attr gml remoteschema text,
gn_geometry_attr_owns boolean,
|T1etac\ala gn_inspireid base identifier_base localid text,
tile gn_inspireid base identifier base namespace text,
map layers gn_inspireid base identifier_base_versionid text,
layers gn_inspireid base identifier_base versionid attr_nilreason text,
styles gn_inspireid base identifier base versionid attr xsi nil boolean,

gn_leastdetailedviewingreseolution_attr_nilreason text,

colr:j:::ilgons gn_leastdetailedviewingresolution_attr_owns boolean, Click Execute to
creale tables
databases
remote Execute
services . i
T Turn on highlighting
provider

Figure 42. Auto-generated database table statements

In order to execute the SQL script, click the link Execute. The SQL statements will now be executed

146

against your database and the tables will be created:

Security hint: No password has been set.

Active workspace: ps-sl [Reload] [Validate]

Home
general

workspaces

proxy

password

module info Setupidaisbese

CREATE SCHEMA IF NOT EXISTS schutzgeb;

web services CREATE TABLE schutzgeb.gn_namedplace (

services attr_gml id text,

gml_identifier text,

data stores ; e
gml_identifier_attr_codespace text,

coverage gn_beginlifespanversion timestamp,
feature gn_beginlifespanversion attr_nilreason text,
metadata gn_beginlifespanversion_attr_xsi nil boolean,
tile gn_endlifespanversion timestamp,

map layers gn_endl@fespanversion_att r_ni}re.?snn text,

gn_endlifespanversion_attr_xsi nil boolean,

layers gn_geometry_attr_nilreason text,
styles gn_geometry attr_gml remoteschema text,
themes gn_geometry_attr_owns boolean,

gn_inspireid base identifier_base localid text,

connections e . 1ol
gn_inspireid base identifier base namespace text,

T gn_inspireid base identifier_ base_versionid text,
remote gn_inspireid base_identifier base_versionid attr nilreason text,
senvices gn_inspireid base identifier base versionid attr xsi nil boolean,
processes gn_leastdetailedviewingresolution_attr nilreason text,
provider gn_leastdetailedviewingresolution_attr_owns boolean, .|click Execute to

create tables.

Figure 43. Executing database table statements

Next, reinitialize the other workspace resources by clicking Reload next to your active workspace.
If there are no error messages showing, the execution of the SQL script using Setup tables was
successful!

The WFS and WMS now retrieve features directly from your database. However, since the database
is currently empty, the WMS will not render any data, and the WFS will return no features when
queried. In order to access features, you need to insert data into the database first. This can be done
for example by using the deegree GmlLoader.

The deegree GmlLoader is available as a standalone download at:
* https://www.deegree.org/download/

It is also included in the deegree webservices Docker images at the following path inside the
container:

» /opt/deegree-tools-gml.jar

See usage information in chapter Using the GmlLoader CLI GmlLoader.

147

https://www.deegree.org/download/

Chapter 7. Tile stores

Tile stores are resources that provide access to pre-rendered map tiles. The common use case for
tile stores is to provide data for tile layers.

The remainder of this chapter describes some relevant terms and the tile store configuration files
in detail. You can access this configuration level by clicking on the tile stores link in the
administration console. The configuration files are located in the datasources/tile/ directory of the
deegree workspace.

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 44. Tile store resources provide access to pre-rendered map tiles

7.1. Tile stores, tile data sets and tile matrix sets

A tile store is what you configure in a single tile store configuration file. It defines one or more
(stored) tile data sets. Other resources such as the tile layer configuration usually refer to a specific
tile data set from a tile store.

The structure of a tile data set is determined by specifying the identifier of a tile matrix set. Most
often, one wants to define tile data sets that conform to a pre-defined tile matrix set. In that case,
one only has to provide the tile store configuration file.

The term tile matrix set has been coined deliberately to coincide with the same term from the
WMTS specification and refers to structure and spatial properties of the tile matrix. The tile matrix
sets (or "quads") from WMTS 1.0.0 and INSPIRE ViewService 3.1 specifications are already
predefined, but additional tile matrix sets may be defined as well (see below).

Take note that it is not necessary to provide actual tiles for all tiles defined within the tile matrix
set, a tile data set may contain a subset. The only requirement is that you need to fulfill the
structure requirements (CRS, size of tiles, position of tiles in world coordinates, scale).

148

https://www.ogc.org/standard/wmts/

7.1.1. Pre-defined tile matrix sets

The following table lists the tile matrix sets that are pre-defined in deegree:

Workspace Name in URN Specification document
identifier specification

globalcrs84scale GlobalCRS84Sc urn:ogc:def:wkss:0GC:1.0:Global OGC WMTS 1.0.0

ale CRS84Scale
globalcrs84pixel GlobalCRS84Pix urn:ogc:def:wkss:0GC:1.0:Global OGC WMTS 1.0.0
el CRS84Pixel
googlecrs84quad GoogleCRS84Qu urn:ogc:def:crs:0GC:1.3:CRS84 OGC WMTS 1.0.0
ad
googlemapscompa GoogleMapsCo urn:ogc:def:wkss:0GC:1.0:Google OGC WMTS 1.0.0
tible mpatible MapsCompatible
inspirecrs84quad InspireCRS84Q n/a INSPIRE View Service
uad Specification 3.1

You can override these standard definitions by placing an appropriately named file into the
datasources/tile/tilematrixset/ directory of your workspace. It is recommended to always use lower
case file names to avoid confusion.

7.1.2. User-defined tile matrix sets

There are currently two ways to configure tile matrix sets. The first way is to state the structure of
the matrices explicitly (described here), the second will extract the structure from a tiled GeoTIFF
(BIGTIFF) file (possibly with overlays, described in the GeoTIFF section).

Like everything else in the deegree workspace, defining a tile matrix set means placing a
configuration file into a standard location, in this case the datasources/tile/tilematrixset directory.

Let’s have a look at an example for the explicit configuration:

149

<TileMatrixSet xmlns="http://www.deegree.org/datasource/tile/tilematrixset">
<CRS>urn:ogc:def:crs:06C:1.3:CRS84</CRS>

<TileMatrix>
<Identifier>leb</Identifier>
<ScaleDenominator>1e6</ScaleDenominator>
<TopLeftCorner>-180 84</TopLeftCorner>
<TileWidth>256</TileWidth>
<TileHeight>256</TileHeight>
<MatrixWidth>60000</MatrixWidth>
<MatrixHeight>50000</MatrixHeight>

</TileMatrix>

<TileMatrix>
<Identifier>2.5e6</Identifier>
<ScaleDenominator>2.5e6</ScaleDenominator>
<TopLeftCorner>-180 84</TopLeftCorner>
<TileWidth>256</TileWidth>
<TileHeight>256</TileHeight>
<MatrixWidth>9000</MatrixWidth>
<MatrixHeight>7000</MatrixHeight>

</TileMatrix>

</TileMatrixSet>

As you can see, the format is almost identical to the one from the WMTS capabilities documents. A
tile matrix set is always defined for a single coordinate system, and contains one or more tile
matrices. Each tile matrix has an identifier, a specific scale, an origin (the top left corner in world
coordinates), defines a tile width/height in pixels and specifies how many tiles there are in x and y
direction.

You do not need to explicitly specify the envelope, it will be calculated automatically from the
values you provide. Keep in mind that the conversion between scale and resolution uses the WMTS
conversion factor of approx. 111319 in case of degree based coordinate systems (that’s important so
the envelope is calculated correctly).

7.2. GeoTIFF tile store

The GeoTIFF tile store can be used to configure tile data sets based on GeoTIFF/BIGTIFF files. The
tile store is currently read-only. The requirements for the GeoTIFFs are:

* it must be created as BIGTIFF (eg. with GDAL using the -co BIGTIFF=YES option)

* it must be created as a tiled tiff (eg. with GDAL using the -co TILED=YES option)

* it can contain overviews (it is best to use a recent GDAL version >= 3.0, where you can use
GDAL_TIFF_OVR_BLOCKSIZE to specify the overview tile size)

e itis recommended that the overviews contain the same tile size as the main level

* it must contain the envelope as GeoTIFF tags in the tiff (don’t use world files)

150

e it is recommended that the CRS is contained as GeoTIFF tag (but can be overridden in the tile

matrix set config, see below)

To make it easy to create a WMTS based on a GeoTIFF, a tile matrix set can be generated from the
GeoTIFF structure, using the method described further down. But if you manage to generate your
TIFF files to fit the structure of another matrix set it is just as well (the envelope of the GeoTIFF can
be a subset of the tile matrix set’s envelope).

Let’s have a look at an example configuration:

<GeoTIFFTileStore xmlns="http://www.deegree.org/datasource/tile/geotiff">

<TileDataSet>

<Identifier>test</Identifier>

<TileMatrixSetId>utah</TileMatrixSetId>
<File>../../data/test.tif</File>
<ImageFormat>image/png</ImageFormat>

</TileDataSet>

</GeoTIFFTileStore>

(You can define multiple tile data sets within one tile store.)

Option Cardinal Value Description
ity
<Identifier> 0.1 Strin Identifier of the TileDataSet, default: name of File
g
<TileMatrixSetId> 1 Strin Id of the tile matrix set
g
<File> 1 Strin Path to the GeoTIFF file
g
<ImageFormat> 0.1 Strin Image format specifies the output image format, default:
g image/png
<AccessConfig> 0.1 Comp Configuration of the GeoTIFF access
lex

» Identifier: The identifier is optional, and defaults to the base name of the file (in the example

test.tif)

TileMatrixSetId: The tile matrix set id references the tile matrix set

* File: obviously you need to point to the GeoTIFF file

» ImageFormat: The image format specifies the output image format, this is relevant if you use the
tile store for a WMTS. The default is image/png.

* AccessConfig: see below

To generate a tile matrix set from the GeoTIFF, put a file into the datasources/tile/tilematrixset/

151

directory. See how it must look like:

<GeoTIFFTileMatrixSet xmlns=

"http://www.deegree.org/datasource/tile/tilematrixset/geotiff">
<StorageCRS>EPSG:26912</StorageCRS>
<File>../../../data/utah.tif</File>

</GeoTIFFTileMatrixSet>

The storage crs is optional if the file contains an appropriate GeoTIFF tag, but can be used to
override it.

7.2.1. AccessConfig

Access of the GeoTIFF tiles uses a object pool to improve the performance of reading the tiles. The
object pool should be configured considering the data as well as the given hardware resources.

<AccessConfig>
<MaxActive>10</MaxActive>
</AccessConfig>

Option Cardinal Value Description
ity
<MaxActive> 0..1 Integ Maximum number of objects allocated by the pool, default: 8
er

* MaxActive: Controls the maximum number of objects that can be allocated by the pool. Increase
this value if the number of tiles retrieved by one request is more than 8 and your hardware is
able to handle more than 8 tiles at the same time.

7.3. File system tile store

The file system tile store can be used to provide tiles from tile cache like directory hierarchies. This
tile store is read-write.

Let’s explain the configuration using an example:

152

http://tilecache.org

<FileSystemTileStore xmlns="http://www.deegree.org/datasource/tile/filesystem">

<TileDataSet>
<Identifier>layeri</Identifier>
<TileMatrixSetId>inspirecrs84quad</TileMatrixSetId>
<TileCacheDiskLayout>
<LayerDirectory>../../data/tiles/layer1</LayerDirectory>
<FileType>png</FileType>
</TileCacheDiskLayout>
</TileDataSet>

</FileSystemTileStore>

(You can define multiple tile data sets within one tile store.)

* The identifier is optional, default is the layer directory base name
e The tile matrix set id references the tile matrix set

* Currently only the tile cache disk layout is supported. Just point to the layer directory and
specify the file type of the images (png is recommended, but most image formats are supported)

Please note that if you use external tools to seed the tile store, you need to make sure the resulting
structure is compatible. The 00 directory corresponds to the first tile matrix of the referenced tile
matrix set, 01 to the second tile matrix and so on.

7.4. Remote WMS tile store

The remote WMS tile store can be used to generate tiles on-the-fly from a WMS service. This tile
store is read-only.

While you can configure multiple tile data sets in one remote WMS tile store configuration, they
will all be based on one WMS.

Let’s have a look at an example:

153

<RemoteWMSTileStore xmlns="http://www.deegree.org/datasource/tile/remotewms">
<RemoteWMSId>wms1</RemoteWMSId>

<TileDataSet>
<Identifier>satellite</Identifier>
<TileMatrixSetId>inspirecrs84quad</TileMatrixSetId>
<OutputFormat>image/png</OutputFormat>
<RequestParams>
<Layers>SatelliteProvo</Layers>
<Styles>default</Styles>
<Format>image/png</Format>
<CRS>EPSG:4326</CRS>
</RequestParams>
</TileDataSet>

</RemoteWMSTileStore>

* The remote wms id is mandatory, and must point to a WMS type remote ows resource
* The identifier for the tile data sets is mandatory

* The tile matrix set id references the tile matrix set

* The output format is relevant if you use this tile data set in a WMTS

* The request params section specifies parameters to be used in the

GetMap requests sent to the WMS

» The layers parameter can be used to specify one or more (comma separated) layers to request

» The styles parameter must correspond to the layers parameter (works the same as GetMap)

» The format parameter specifies the image format to request from the WMS

» The CRS parameter specifies which CRS to use when requesting
Additionally, you can specify default and override values for request parameters within the request
params block. Just add Parameter tags as described in the Request options layer chapter. The
replacing/defaulting currently only works when you configure a WMTS on top of this tile store.

GetTile parameters are then mapped to GetMap requests to the backend, and GetFeaturelnfo WMTS
parameters to GetFeaturelnfo WMS parameters on the backend.

7.5. Remote WMTS tile store

The remote WMTS tile store can be used to generate tiles on-the-fly from a WMTS service. This tile
store is read-only.

While you can configure multiple tile data sets in one remote WMTS tile store configuration, they
will all be based on one WMTS.

Let’s have a look at an example:

154

<RemoteWMTSTileStore xmlns="http://www.deegree.org/datasource/tile/remotewmts">
<RemoteWMTSId>wmts1</RemoteWMTSId>

<TileDataSet>
<Identifier>satellite</Identifier>
<OutputFormat>image/png</OutputFormat>
<TileMatrixSetId>EPSG:4326</TileMatrixSetId>
<RequestParams>
<Layer>SatelliteProvo</Layer>
<Style>default</Style>
<Format>image/png</Format>
<TileMatrixSet>EPSG:4326</TileMatrixSet>
</RequestParams>
</TileDataSet>

</RemoteWMTSTileStore>

* The remote WMTS id is mandatory, and must point to a WMTS type remote OWS resource

* The identifier for the tile data sets is optional, defaults to the value of the Layer request
parameter

* The output format is relevant if you want to use this tile data set in a WMTS, defaults to the
value of the Format request parameter

* The tile matrix set id references the local tile matrix set you want to use, defaults to the value of
the TileMatrixSet request parameter

» The request params section specifies parameters to be used in the

GetTile requests sent to the WMTS

* The layer parameter specifies the layer name to request
* The style parameter specifies the style name to request
» The format parameter specifies the image format to request

» The tile matrix set parameter specifies the tile matrix set to request

Please note that you need a locally configured tile matrix set that corresponds exactly to the tile
matrix set of the remote WMTS. They need not have the same identifier(s) (just configure the
TileMatrixSetId option if they differ), but the structure (coordinate system, tile size, number of tiles
per matrix etc.) needs to be identical.

Additionally, you can specify default and override values for request parameters within the request
params block. Just add Parameter tags as described in the Request options layer chapter. The
replacing/defaulting currently only works when you configure a WMTS on top of this tile store.
Please note that the scope attribute allows GetTile and GetFeaturelnfo, as GetMap is not supported
by WMTS services.

155

Chapter 8. Coverage stores

Coverage stores are resources that provide access to raster data. The most common use case for
coverage stores is to provide data for coverage layers. You can access this configuration level by
clicking the coverage stores link in the administration console. The corresponding resource
configuration files are located in subdirectory datasources/coverage/ of the active deegree
workspace directory.

/_ deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS)

- /

Figure 45. Coverage store resources provide access to raster data

Processes

For raster data there are three different possible configurations. One is for <Raster> and one is for
<MultiResolutionRaster>. The third possibility is for <Pyramid>. If you are not sure which one to
use, you probably want the <Raster> configuration.

8.1. Raster

The most common method to provide coverages with deegree, is to use Raster. With the Raster
configuration it is possible to provide single RasterFiles or a complete RasterDirectory directly.

Here are two examples showing RasterFile and RasterDirectory configuration:

<Raster xmlns="http://www.deegree.org/datasource/coverage/raster" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.deegree.org/datasource/coverage/raster
https://schemas.deegree.org/core/3.6/datasource/coverage/raster/raster.xsd"
originLocation="outer">
<StorageCRS>EPSG:26912</StorageCRS>
<RasterFile>../../../data/utah/raster/dem.tiff</RasterFile>
</Raster>

156

<Raster xmlns="http://www.deegree.org/datasource/coverage/raster” xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.deegree.org/datasource/coverage/raster
https://schemas.deegree.org/core/3.6/datasource/coverage/raster/raster.xsd"
originLocation="outer">

<StorageCRS>EPSG:26912</StorageCRS>

<RasterDirectory>../../../data/utah/raster/Satellite_Provo/</RasterDirectory>
</Raster>

A Raster can have several attributes:

» The originLocation attribute can have the values center or outer to declare the pixel origin of
the coverage. If omitted, center is used as origin location.

* The nodata attribute can be optionally used to declare a nodata value.

* The readWorldFiles parameter can have the values true or false to indicate if world files will be
read. Default value is true.

* The StorageCRS parameter is optional but recommended. It contains the EPSG code of the
coverage sources.

* The RasterFile and RasterDirectory parameters contain the path to your coverage sources. The
RasterDirectory parameter can additionally have the recursive attribute with true and false as
value to declare subdirectories to be included.

When using raster files, deegree creates on demand cache files. Depending on the
raster data used, the size of the cache files may vary. In individual cases, the use of

A cache files can be prevented by creating a file <filename>.no-cache or
<filename>.no-cache-<level> for whole files or individual levels. Disabling the cache
files can have a negative effect on memory consumption. It is recommended to
leave the cache enabled if possible.

8.2. MultiResolutionRaster

A <MultiResolutionRaster> wraps single raster elements and adds a resolution for each raster. This
means, depending on the resolution of the map a different raster source is used.

Here is an example for a MultiResolutionRaster:

157

<MultiResolutionRaster xmlns="http://www.deegree.org/datasource/coverage/raster"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.deegree.org/datasource/coverage/raster
https://schemas.deegree.org/core/3.6/datasource/coverage/raster/raster.xsd"
originLocation="outer">
<StorageCRS>EPSG:26912</StorageCRS>
<Resolution>
<Raster originLocation="outer" res="1.0">
<StorageCRS>EPSG:26912</StorageCRS>
<RasterFile>../../../data/utah/raster/dem.tiff</RasterFile>
</Raster>
</Resolution>
<Resolution>
<Raster res="2.0">
<StorageCRS>EPSG:26912</StorageCRS>
<RasterDirectory>../../../data/utah/raster/Satellite_Provo/</RasterDirectory>
</Raster>
</Resolution>
</MultiResolutionRaster>

A MultiResolustionRaster contains at least one Resolution

* The Raster parameter has a res attribute. Its value is related to the provided resolution.

The StorageCRS parameter is optional but recommended. It contains the EPSG code of the
coverage sources.

* All elements and attributes from the Raster configuration can be used for the resolutions.

8.3. Pyramid

A <Pyramid> is used for deegree’s support for raster pyramids. For this, it is required that the raster
pyramid must be a GeoTIFF, containing the extent and coordinate system of the data. Overlays
must be multiples of 2. This is best tested with source data being processed with GDAL.

8.3.1. Prerequisites for Pyramids

* Must be a GeoTiff as BigTiff

Must be RGB or RGBA
e CRS must be contained

e Must be tiled

Should have overviews where each overview must consist of 1/2 resolution

The following example shows, how to configure a coverage pyramid:

158

<Pyramid xmlns="http://www.deegree.org/datasource/coverage/pyramid" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.deegree.org/datasource/coverage/pyramid
https://schemas.deegree.org/core/3.6/datasource/coverage/raster/pyramid.xsd">
<PyramidFile>data/example.tif</PyramidFile>
<CRS>EPSG:4326</CRS>
</Pyramid>

* A Pyramid contains a PyramidFile parameter with the path to the pyramid as its value.
* A Pyramid contains a CRS parameter describing the source CRS of the pyramid as EPSG code.
* Asin Raster, the nodata attribute can be optionally used to declare a nodata value.

* As in Raster, the originLocation attribute can have the values center or outer to declare the
pixel origin of the coverage. If omitted, center is used as origin location.

8.4. Oracle GeoRaster

A <OracleGeoraster> is used to wrap a connection information to a singe Oracle GeoRaster element
inside a Oracle Database.

To be able to use the module it is required that the Oracle GeoRaster libraries are available, see
Adding database modules for details.

The following example shows, how to configure a GeoRaster coverage (minimal required options):

<OracleGeoraster
xmlns="http://www.deegree.org/datasource/coverage/oraclegeoraster”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/coverage/oraclegeoraster
https://schemas.deegree.org/core/3.6/datasource/coverage/oraclegeoraster/oraclegeorast
er.xsd">]

<JDBCConnId>oracle</JDBCConnId>

<StorageCRS>EPSG:25832</StorageCRS>

<Raster id="17" />
</0OracleGeoraster>

The second example shows a complete configuration, which will load faster because no database
lookups are required to initiate the coverage store.

159

<OracleGeoraster
xmlns="http://www.deegree.org/datasource/coverage/oraclegeoraster”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/coverage/oraclegeoraster
https://schemas.deegree.org/core/3.6/datasource/coverage/oraclegeoraster/oraclegeorast
er.xsd">

<JDBCConnId>oracle</JDBCConnId>
<StorageCRS>EPSG:31468</StorageCRS>

<StorageBBox>
<LowerCorner>4508000.0 5652000.0</LowerCorner>
<UpperCorner>4518000.0 5642000.0</UpperCorner>
</StorageBBox>

<Raster 1d="17" maxLevel="7" rows="10000" columns="10000">
<Table>RASTER</Table>
<RDTTable>RASTER_RDT</RDTTable>
<Column>IMAGE</Column>

</Raster>
<Bands>
<RGB red="1" green="2" blue="3" />
</Bands>
</OracleGeoraster>

If your GeoRaster coverage only consist in a greyscale coverage, or you only want to server a single
band you could specify the following:

<Bands>
<Single>1</Single>
</Bands>
Option Cardinal Value Description
ity
@id 1 integ Identifier of the specified Oracle GeoRaster object
er
@maxLevel 0.1 integ The number of pyramid levels, specify zero if no pyramid is
er available
@rows 0..1 integ Number of rows of the GeoRaster
er
@columns 0.1 integ Number of columns of the GeoRaster
er
<Table> 0.1 Strin Defines the name of table name which contains the
g GeoRaster object

160

Option Cardinal Value Description

ity
<RDTTable> 0..1 Strin The name of the corresponding raster data table.
g
<Column> 0.1 Strin The column name of the <Table> in which the

g SDO_GEORASTER is stored

161

Chapter 9. Metadata stores

Metadata stores are data stores that provide access to metadata records. The two common use cases
for metadata stores are:

* Accessing via CSW

* Providing of metadata for web service resources (TBD)
The remainder of this chapter describes some relevant terms and the metadata store configuration
files in detail. You can access this configuration level by clicking on the metadata stores link in the

administration console. The configuration files are located in the datasources/metadata/ directory
of the deegree workspace.

/_ deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS)

- /

Figure 46. Metadata store resources provide access to metadata records

Processes

9.1. Memory ISO Metadata store

The memory ISO metadata store implementation is transactional and works file based.

The memory metadata store configuration is defined by schema file https://schemas.deegree.org/
core/3.6/datasource/metadata/iso19139/memory/memory.xsd

Memory ISO Metadatastore config (skeleton)

162

https://schemas.deegree.org/core/3.6/datasource/metadata/iso19139/memory/memory.xsd
https://schemas.deegree.org/core/3.6/datasource/metadata/iso19139/memory/memory.xsd

<ISOMemoryMetadataStore
xmlns="http://www.deegree.org/datasource/metadata/iso19139/memory"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"https://schemas.deegree.org/core/3.6/datasource/metadata/iso19139/memory/memory.xsd">

<!-- [1...n] directory to be used -->
<ISORecordDirectory>..</ISORecordDirectory>
<!-- [0...1] directory to be used to insert records -->

<InsertDirectory>..</InsertDirectory>
</ISOMemoryMetadataStore>

The root element has to be ISOMemoryMetadataStore and the only mandatory element is:

* ISORecordDirectory: A list of directories containing records loaded in the store during start of
the store.

To allow insert transactions one optional element must be declared:

* InsertDirectory: Directory to store inserted records, can be one of the directories declared in the
element ISORecordDirectory.

9.2. SQL ISO Metadata store

The SQL metadata store configuration is defined by schema file https://schemas.deegree.org/core/
3.6/datasource/metadata/iso19115/is019115.xsd

SQL ISO Metadatastore config (skeleton)

163

https://schemas.deegree.org/core/3.6/datasource/metadata/iso19115/iso19115.xsd
https://schemas.deegree.org/core/3.6/datasource/metadata/iso19115/iso19115.xsd

<?xml version="1.0" encoding="UTF-8"?>

<ISOMetadataStore
xmlns="http://www.deegree.org/datasource/metadata/iso19115"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/metadata/iso19115
https://schemas.deegree.org/core/3.6/datasource/metadata/iso19115/is019115.xsd">

<!-- [1] Identifier of JDBC connection -->
<JDBCConnId>conn1</JDBCConnId>

<!-- [0..1] Definition of the Inspectors for checking the metadata for insert
or update transaction -->
<Inspectors>

<!-- [0..1] Checks the fileldentifier -->
<FileldentifierInspector rejectEmpty="true"/>

</Inspectors>

<!-- [0..1] Specifies the content of the queryable property 'anyText' -->
<AnyText>

<!-- [0..1] Set of XPath-expression (remove line breaks in xpaths!) -->
<Custom>
<XPath>/gmd:MD_Metadata/gmd:identificationInfo/
gmd:MD_Dataldentification/gmd:descriptiveKeywords/gmd:MD_Keywords/
gmd:keyword/gco:CharacterString</XPath>
<XPath>/gmd:MD_Metadata/gmd:contact/gmd:CI_ResponsibleParty/
gmd:individualName/gco:CharacterString</XPath>
</Custom>

</AnyText>

</ISOMetadataStore>

The root element has to be ISOMetadataStore and the only mandatory element is:
* JDBCConnld: 1d of the JDBC connection to use (see ...)
The optional elements are:

* Inspectors: List of inspectors inspecting a metadataset before inserting. Known inspectors are:
o FileIdentifierInspector
o Inspirelnspector
o CoupledResourcelnspector
o SchemaValidator

o NamespaceNormalizer

164

» AnyText: Configuration of the values searchable by the queryable property AnyText, possible
values are:

o All: all values
o Core: the core queryable properties (default)
o Custom: a custom set of properties defined as xpath expressions

* QueryableProperties: Configuration of additional query properties. Detailed information can be
found in the following example:

<QueryableProperties>
<!-- can contain multiple elements 'QueryableProperty' -->
<!-- set attribute isMultiple="true" if the xpath links
to a property which can occur multiple times-->
<QueryableProperty isMultiple="true">
<!-- configures the xpath to the element which shoud be queryable
(remove line breaks in xpaths!)-->
<xpath>//gmd:MD_Metadata/gmd:identificationInfo/
gmd:MD_Dataldentification/gmd:spatialRepresentationType/
gmd:MD_SpatialRepresentationTypeCode/@codelistValue</xpath>
<!-- namespace and name to use in a filter expression, e.g
<ogc:PropertyName xmlns:apiso="http://www.opengis.net/cat/csw/apiso/1.0">
apiso:SpatialRepresentationType</ogc:PropertyName> -->
<name namespace="http://www.opengis.net/cat/csw/apiso/1.0">
SpatialRepresentationType</name>
<!-- Name of the column in the table idxt_main where the valus of a record
should be stored, must be added manually -->
<column>spatialRepType</column>
</QueryableProperty>
</QueryableProperties>

If a new queryable property is added or the AnyText value changed the inserted
metadata records are not adjusted to these changes! This means for the example

o above that an existing record with SpatialRepresentationType 'raster' is not found
by searching for all records with this type until the record is inserted or updated
again!

9.3. SQL EBRIM/EO Metadata store

TBD

165

Chapter 10. Map layers

A (map) layer defines how to combine a data store and a style resource into a map. Each layer
resource can be used to define one or more layers. The layers can be used in theme definitions, and
depend on various data source and style resources. This chapter assumes you’ve already
configured a data source and a style for your layer (although a style is not strictly needed; some
layer types can do without, and others can render in a default style when none is given).

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 47. Layer resources define how data store and style resources are combined

10.1. Common configuration

Most layer configurations follow a similar structure. That’s why some of the common components
are exactly the same across configurations (they’re even in common namespaces). In this section
these common elements are described first, the subsequent chapters describe the different layer

types.

10.1.1. Description metadata

The description section is used to describe textual metadata which occurs in almost all objects. This
includes elements such as title, abstract and so on. The format which is being described here is
capable of multilingualism, but processing multilingual strings is not supported yet (you can still
define it, though).

The commonly used prefix for these elements is d. Let’s have a look at an example:

166

<d:Title>My Roads Layer</d:Title>
<d:Abstract>This is my roads layer, which I configured myself. I had no help but the
deegree webservices handbook.</d:Abstract>
<d:Keywords>
<d:Keyword>deegree</d:Keyword>
<d:Keyword>transportation</d:Keyword>
<d:Type codeSpace="none'>unknown</d:Type>
</d:Keywords>

All elements support the lang attribute to specify the language, and all elements may occur multiple
times (including the Keywords element).

10.1.2. Spatial metadata

The spatial metadata is used to describe coordinate systems and envelopes. Typically, the layers can
retrieve the native coordinate system and envelope from the data source, but sometimes it may be
desirable to define a special extent, or add more coordinate systems. In the example configurations,
the prefix s is used for spatial metadata elements, so it is used here as well:

<s:Envelope crs="EPSG:25832'>
<s:LowerCorner>204485 5204122</s:LowerCorner>
<s:UpperCorner>1008600 6134557</s:UpperCorner>

</s:Envelope>

<s:CRS>EPSG:25832 EPSG:31466 EPSG:4326</s:CRS>

As you can see, the envelope is specified in a specific CRS. If the attribute is omitted, EPSG:4326 is
assumed. The CRS element may include multiple codes, separated by whitespace.

10.1.3. Common layer options

This sections describes a set of common layer options. Not all options make sense for all layers, but
most of them do.

The namespace for the elements (newly) defined in this section is commonly bound to the I
character. Let’s have a look at the options available:

Option Cardinalit Value Description
y

Name 1 String The unique identifier of the layer

Description 0..1 Several The description elements described above

Spatial metadata 0..1 Several The spatial metadata elements described
above

MetadataSetId 0..1 String A metadata set id by which this layer is
identified

ScaleDenominators 0..1 Empty Used to define scale constraints on the layer

167

#description
#spatial

Option Cardinalit Value Description

y
Dimension 0.n Complex Used to configure extra dimensions for the
layer
StyleRef 0.n Complex Used to reference one or more styles
LayerOptions 0..1 Complex Used to configure rendering behaviour

The MetadataSetId is used in the WMS to export a MetadataURL based on a template. Please refer to
the WMS configuration for details on how to configure this.

The ScaleDenominators element has min and max attributes which define the constraints in WMS
1.3.0 scale denominators (based on 0.28mm pixel size).

Layer dimensions

The WMS specification supports extra dimensions (besides the spatial extent) for layers, such as
elevation, time or other custom dimensions. Since the support must be present at the layer level,
this must be configured on the layer in deegree. The Dimension element can have the attributes
isTime and isElevation to indicate that you’re defining the standard time/elevation dimension. If
none is given, youw’ll have to specify the Name element. Let’s see what you can configure here:

Option Cardinalit Value Description
y

Name 0.1 String The dimension name, if not elevation or time

Source 1 String/QName The data source of the dimension

DefaultValue 0.1 String Specify a default value to be used, default is none

MultipleValues 0..1 Boolean Whether multiple values are supported, default is
false

NearestValue 0..1 Boolean Whether jumping to the nearest value is supported,
default is false

Current 0..1 Boolean Whether current is supported for time, default is
false

Units 0.1 String What units this dimension uses. Mandatory for non
time/elevation

UnitSymbol 0..1 String What unit symbol to use. Mandatory for non
time/elevation

Extent 1 String The extent of the dimension

Please note that for feature layers, the Source element content must be a qualified property name.

To understand how the omission or specification of the various optional elements here affect the
WMS protocol behaviour, it is recommended to read up on the WMS 1.3.0 specification. The
deegree WMS is going to behave according to what the spec says it must do (what to do in case a
default value is available or not etc.). The format for the values and the extent is also identical to

168

that used for requests/in the spec.

Layer styles

You can configure any number of StyleRef elements. Each corresponds to exactly one style store
configuration, specified by the subelement StyleStoreld. The only other allowed subelement is the
Style element, which can be used to extract/rename specific styles from the style store. If omitted,
all styles matching the layers' name are used. Let’s have a look at an example snippet:

<1:StyleRef>
<1:StyleStoreld>roads_style</1:StyleStoreld>
</1:StyleRef>

Here’s a snippet with Style elements:

PLEASE NOTE: The following mechanisms using StyleName LayerNameRef and StyleNameRef
elements will only work with SLD files. Using direct SE styles, the only way to configure styles is the
above.

<1l:StyleRef>
<1:StyleStoreld>road_styles</1:StyleStoreld>
<1:Style>

</1:Style>
<1l:Style>

</1:Style>
</1:StyleRef>

If a Style element is specified, you must first specify what style you want extracted:

<1:Style>
<1:StyleName>highways</1:StyleName>
<1:StyleTitle>Colorful Highways</1:StyleTitle>
<1l:LayerNameRef>highways</1:LayerNameRef>
<1:StyleNameRef>highways</1:StyleNameRef>

</1:Style>

The StyleName specifies the name under which the style will be known in the WMS. The
LayerNameRef and StyleNameRef are used to extract the style from the style store. The optional
StyleTitle can be used to specify the title of the style. If StyleTitle is not configured, the StyleName is
used for the title instead.

The next part to configure within the Style element is the legend generation, if you don’t want to
use the default legend generated from the rendering style. You can either specify a different style
from the style store to use for legend generation, or you can specify an external graphic.

169

Referencing a different legend style is straightforward:

<1l:Style>

<l:LegendStyle>
<1l:LayerNameRef>highways</1:LayerNameRef>
<1:StyleNameRef>highways_legend</1:StyleNameRef>
</1:LegendStyle>
</1:Style>

With specifying the external graphic, you have the option of referencing a local file, or referencing
a remote URL. Specifying a file is straightforward, and will result in the contents of that file being
used as legend:

<1:Style>

<1l:LegendGraphic>legendimages/mylegend.png</1:LegendGraphic>
</1:Style>

If you specify an HTTP URL instead of a relative path the behaviour is the same by default, the
remote images' content is wused as legend. If you set the optional attribute
outputGetLegendGraphicUrl to false (it’s true by default), the specified URL is written as LegendURL
in the WMS capabilities (the behaviour for GetLegendGraphic requests is the same anyway):

<1:Style>

<1l:LegendGraphic outputGetlegendGraphicUrl="false">
http://legends.acme.com/menu.png</1:LegendGraphic>
</1:Style>

A full example you will find below:

170

<1:StyleRef>
<1:StyleStoreld>road_styles</1:StyleStoreld>
<1:Style>
<1:StyleName>highways</1:StyleName>
<1:StyleTitle>Colorful Highways</1:StyleTitle>
<1l:LayerNameRef>highways</1:LayerNameRef>
<1:StyleNameRef>highways</1:StyleNameRef>
<1l:LegendGraphic outputGetlegendGraphicUrl="false"
>http://legends.acme.com/menu.png</1:LegendGraphic>
</1:Style>
<1l:Style>
<l:LegendStyle>
<1l:LayerNameRef>highways</1:LayerNameRef>
<1:StyleNameRef>highways_legend</1:StyleNameRef>
</1:LegendStyle>
</1:Style>
</1:StyleRef>

Rendering options

The rendering options are basically the same as the WMS layer options. Here’s a copy of the
corresponding table for reference:

Option Cardinalit Value Description
y

AntiAliasing 0.1 Strin Whether to antialias NONE, TEXT, IMAGE or BOTH, default is
g BOTH

RenderingQualit 0..1 Strin Whether to render LOW, NORMAL or HIGH quality, default is

y g HIGH

Interpolation 0.1 Strin Whether to use BILINEAR, NEARESTNEIGHBOUR or BICUBIC
g interpolation, default is NEARESTNEIGHBOUR

MaxFeatures 0.1 Integ Maximum number of features to render at once, default is
er 10000

Featurelnfo 0.1 None attribute enabled: if false, feature info is disabled (default is

true)
Featurelnfo 0.1 None attribute pixelRadius: Number of pixels to consider when

doing GetFeaturelnfo, default is 1

Featurelnfo 0..1 None attribute decimalPlaces: Desired number of digits after the
decimal point when returning numeric values in
GetFeaturelnfo, default is unbounded. Currently limited to
GetFeaturelnfo for coverage (raster) data.

Here is an example snippet:

171

<1l:LayerOptions>
<1:AntiAliasing>TEXT</1:AntiAliasing>
</1:LayerOptions>

10.2. Feature layers

Feature layers are layers based on a feature store. You can have multiple layers defined in a feature
layers configuration, each based on feature types from the same feature store.

You have two choices to configure feature layers. One option is to try to have deegree figure out
what layers to configure by itself, the other is to manually define all the layers you want. Having
deegree do the configuration automatically has the obvious advantage that the configuration is
minimal, with the disadvantage of lacking flexibility.

10.2.1. Auto layers

This configuration only involves to specify what feature store to use, and optionally, what styles.
Let’s have a look at an example:

<Featurelayers xmlns='http://www.deegree.org/layers/feature’
xmlns:d="http://www.deegree.org/metadata/description’
xmlns:s="http://www.deegree.org/metadata/spatial’
xmlns:1="http://www.deegree.org/layers/base'>

<Autolayers>
<FeatureStoreld>myfeaturestore</FeatureStoreld>
<StyleStoreld>stylel</StyleStoreld>
<StyleStoreld>style2</StyleStoreld>
</Autolayers>

</Featurelayers>

This will create one layer for each (concrete) feature type in the feature store. If no style stores are
configured, the default style will be used for all layers. If style stores are configured, matching
styles will be automatically used if available. So if you have a feature type with (local) name Autos,
deegree will check all configured style stores for styles identified by layer name Autos and use
them, if available. The name Autos will be used as name and title as appropriate, and spatial
metadata will be used as available from the feature store.

10.2.2. Manual configuration

The basic structure of a manual configuration looks like this:

172

<Featurelayers xmlns="http://www.deegree.org/layers/feature’
xmlns:d="http://www.deegree.org/metadata/description’
xmlns:s="http://www.deegree.org/metadata/spatial’
xmlns:1="http://www.deegree.org/layers/base'>
<FeatureStoreld>myfeaturestore</FeatureStoreld>
<Featurelayer>

</Featurelayer>
<Featurelayer>

</Featurelayer>
</Featurelayers>

As you can see, the first thing to do is to bind the configuration to a feature store. After that, you can
define one or more feature layers.

A feature layer configuration has three optional elements besides the common elements. The
FeatureType can be used to restrict a layer to a specific feature type (use a qualified name). The
Filter element can be used to specify a filter that applies to the layer globally (use standard OGC
filter encoding 1.1.0 ogc:Filter element within):

<Featurelayer>
<FeatureType xmlns:app="http://www.deegree.org/app'>app:Roads</FeatureType>
<Filter>
<Filter xmlns='http://www.opengis.net/ogc'>
<PropertyIsEqualTo>

<PropertyName xmlns:app="http://www.deegree.org/app'>app:type</PropertyName>
<Literal>123</Literal>
</PropertyIsEqualTo>
</Filter>
</Filter>

</Featurelayer>

The third extra option is the SortBy element, which can be used to influence the order in which
features are drawn:

173

<Featurelayer>

<SortBy reverseFeatureInfo="false">
<SortBy xmlns="http://www.opengis.net/ogc">
<SortProperty>
<PropertyName xmlns:app="http://www.deegree.org/app">app:level</PropertyName>
</SortProperty>
</SortBy>
</SortBy>

</Featurelayer>

The attribute reverseFeaturelnfo is false by default. If set to true, the feature that is drawn first will
appear last in a GetFeaturelnfo feature collection.

After that the standard options follow, as outlined in the common section.

10.3. Tile layers

Tile layers are based on tile data sets. You can configure an unlimited number of tile layers each
based on several different tile data sets within one configuration file.

As you might have guessed, most of the common parameters are ignored for this layer type. Most
notably, the style and dimension configuration is ignored.

In most cases, a configuration like the following is sufficient:

<Tilelayers xmlns="http://www.deegree.org/layers/tile"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:1="http://www.deegree.org/layers/base">
<Tilelayer>
<1:Name>example</1:Name>
<d:Title>Example INSPIRE layer</d:Title>
<TileDataSet tileStoreld="sometilestore">roads</TileDataSet>
<TileDataSet tileStoreld="sometilestore4326">roads</TileDataSet>
</Tilelayer>
</Tilelayers>

Just repeat the TileLayer element once for each layer you wish to configure.

Please note that each tile data set needs to be configured with a unique tile matrix set within one
layer. It is currently not possible (let’s say it’s not advisable) to configure two tile data sets based on
the same tile matrix set within one layer, even if their actual data does not overlap.

If used in a WMTS, the WMTS capabilities will contain only the actually used tile matrix sets, and
will contain appropriate links in the layers which have been configured with fitting tile data sets.

174

#common

10.4. Coverage layers

Coverage layers are based on coverages out of coverage stores. Similar to feature layers, you can
choose between an automatic layer setup and a manual configuration.

10.4.1. Auto layers

All you need to configure is the coverage store and an optional style store:

<Coveragelayers xmlns="http://www.deegree.org/layers/coverage"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:1="http://www.deegree.org/layers/base">
<Autolayers>
<CoverageStoreId>dem</CoverageStoreld>
<StyleStorelId>heightmap</StyleStoreld>
</Autolayers>
</Coveragelayers>

In theory this would add one layer for each coverage in the coverage store, but since only one
coverage is supported per coverage store at the moment, only one layer will be the result. If a style
store is specified, all styles matching the layer name (the coverage store id) will be available for the
layer.

10.4.2. Manual configuration

The manual configuration requires the definition of a coverage store, and one or many coverage
layer definitions:

<Coveragelayers xmlns="http://www.deegree.org/layers/coverage"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:1="http://www.deegree.org/layers/base">
<CoverageStoreId>dem</CoverageStoreld>
<Coveragelayer>
<!-- standard layer options -->
</Coveragelayer>
</Coveragelayers>

Within the CoverageLayer element you can define the common layer options and one optional
element. While only one coverage is supported per coverage store, it might still be desirable to
define multiple layers based on the store, for example one layer per style.

The optional element FeatureInfoMode can be used to control how the GetFeatureInfo operations
are dealt with.

175

#common

<Coveragelayers xmlns="http://www.deegree.org/layers/coverage"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:1="http://www.deegree.org/layers/base">
<CoverageStoreId>dem</CoverageStoreld>
<Coveragelayer>
<!-- standard layer options -->
<FeatureInfoMode>POINT</FeatureInfoMode>

</Coveragelayer>
</Coveragelayers>
Option Cardinalit Value Description
y
FeatureInfoMod 0..1 Strin Whether to use a INTERPOLATION or POINT based approach
e g to get a GetFeaturelInfo result, default is INTERPOLATION

10.5. Remote WMS layers

Remote WMS layers are based on layers requested from another WMS on the network. In its
simplest mode, the remote WMS layer store will provide all layers that the other WMS offers, but
you can pick out and restrict the configuration to single layers if you want. The common style and
dimension options are not used in this layer configuration.

The remote WMS layer configuration is always based on a single RemoteWMS resource, so the most
basic configuration which cascades all available layers looks like this:

<RemoteWMSLayers xmlns="http://www.deegree.org/layers/remotewms">
<RemoteWMSId>d3</RemoteWMSId>
<!-- more detailed options would follow here -->
</RemoteWMSLayers>

In many cases that’s already sufficient, but if you wish to control the way the requests are being
sent, you can specify the RequestOptions. If you want to limit/restrict the layers, you can specify any
amount of Layer elements.

10.5.1. Request options

Use the ImageFormat element to indicate which format should be requested from the remote WMS.
Set the attribute transparent to false if you don’t want to request transparent images. Default is to
request transparent image/png maps:

<RequestOptions>
<ImageFormat transparent='false'>image/gif</ImageFormat>
</RequestOptions>

The DefaultCRS element can be used to specify the CRS to request. If the useAlways attribute is true,

176

#common

maps are always requested in this format, and transformed if necessary. If set to false (the default),
the requested CRS will be requested from the remote service if available. If a requested CRS is not
available from the remote service, the value of this option is used, and the resulting image
transformed.

The Parameter element can be used (multiple times) to add and/or fix KVP parameter values used
in requests to the remote service. The name attribute (which is required) configures which
parameter you're talking about, and the content specifies a default or fixed value. The use and
scope attributes can be used to specify how to handle parameters. Have a look at the following table
for default and possible values of these attributes:

Name Default Possible values
use allowOverride allowOverride, fixed
scope All GetMap, GetFeaturelnfo, All

Let’s have a look at a couple of examples:

<RequestOptions>
<Parameter name='BGCOLOR'>#00ff0@0</Parameter>
<RequestOptions>

This means that all maps are requested with a background color of green, unless the request
overrides it. GetFeatureInfo requests will also have the BGCOLOR parameter set, although it makes
no difference there.

Another example:

<RequestOptions>
<Parameter name='USERNAME'>SEC_ADMIN</Parameter>
<Parameter name="PASSWORD'>JOSE67</Parameter>
</RequestOptions>

In this case all requests will have USERNAME and PASSWORD set to these values. Users can still
override these values in requests.

A last example:

<RequestOptions>
<Parameter scope='GetMap' name='BGCOLOR'>#00ff00</Parameter>
<Parameter use='fixed' name='USERNAME'>SEC_ADMIN</Parameter>
<Parameter use="fixed' name='PASSWORD'>JOSE67</Parameter>
</RequestOptions>

Now all GetMap requests will have the USERNAME and PASSWORD parameters hard coded to the
configured values, with the BGCOLOR parameter set to green by default, but with the possibility of
override by the user. GetFeatureInfo requests will only have the USERNAME and PASSWORD

177

parameters fixed to the configured values.

10.5.2. Layer configuration

The manual configuration allows you to pick out a layer, rename it, and optionally override the
common description, spatial metadata and legend graphic of the styles. What you don’t override,
will be copied from the source. Let’s look at an example:

<RemoteWMSLayers>
<Layer>
<0riginalName>cite:BasicPolygons</0riginalName>
<Name>basic_polygons</Name>
<!-- optionally override description (title, abstract, keywords) -->
<!-- optionally override envelope, crs -->
<!-- optionally override legend graphic of the styles -->
<!-- optionally set layer options -->
<!-- optionally configure XSLT script to transform GetFeatureInfo response to a
arbitrary GML version
<XSLTFile targetGmlVersion="GML_32">remoteGfiResponse2gm132.xs1</XSLTFile>
-->
</Layer>
</RemoteWMSLayers>

Please note that once you specify one layer, you’ll need to specify each layer you want to make
available. If you want all layers to be available, don’t specify a Layer element. Of course, you can
specify as many Layer elements as you like.

With the element XSLTFile a xslt-Script can be configured transforming the response of a
GetFeaturelnfo request of the remote WMS to gml per layer. The values GML_2, GML_30, GML_31
and GML_32 are allowed as values of the attribute targetGmlVersion.

Example containing configuration of custom LegendGraphic:

178

<RemoteWMSLayers xmlns="http://www.deegree.org/layers/remotewms">
<RemoteWMSId>d3</RemoteWMSId>
<Layer>
<OriginalName>remote_layer_name</0riginalName>
<Name>new_layer_name</Name>
<Style>
<OriginalName>original_style_name</OriginalName> <!-- original name of the style
-->
<LegendGraphic>new_legendGraphic.png</LegendGraphic> <!-- reference to the
legend graphic as local file -->
<Style>
<Style>
<OriginalName>original_style_name2</OriginalName> <!-- original name of the
style -->
<LegendGraphic outputGetlLegendGraphicUrl="true"
>https://example.com/new_legendGraphic.png</LegendGraphic> <!-- reference to the
legend graphic as remote URL -->
<Style>
</Layer>
<!-- more detailed options will follow here -->
</RemoteWMSLayers>

In this case, Layer remote_layer_name is renamed to new_layer_name and all other layers of the
remote service are ignored. For two styles original style name and original style_ name2 the
LegendGraphic is overwritten. There is a reference to a local file in the first case. In the second case,
the new graphic is referenced remotely. The second case is not recommended for production
instances of deegree due to possible availability dropouts and security reasons. The attribute
outputGetLegendGraphicUrl (default value is true) defines if the OnlineResource of LegendURL
contains a GetLegendGraphic request (outputGetLegendGraphicUrl="true") or references the remote
resource directly (outputGetLegendGraphicUrl="false"). If at least one style is configured for a layer,
all other styles of the remote layer are not copied from the source anymore. If no default style is
configured, the default style of the remote service is used as this style is mandatory.

179

Chapter 11. Map themes

A theme defines a tree like hierarchy, which at each node can contain a number of layers. For
people familiar with WMS, a theme is basically a layer tree without the actual layer definition.

In deegree it is used to define a structure with layers to be used in service configurations, notably
WMS and WMTS. The concept originated from the WMTS 1.0.0 specification, with a strong hunch
that it might be used in subsequent WMS specifications as well (namely WMS 2.0.0).

To configure a theme, you should already have a couple of layers configured. Right now there are
two types of theme configurations available. The most commonly used is the 'standard' theme
configuration, where you manually configure the structure. Another is a configuration which
extracts a theme from a remote WMS resource’s layer tree.

A theme always has exactly one root node (theme). A theme can contain zero or more sub-themes,
and zero or more layers.

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 48. Theme resources group layers into trees

11.1. Standard themes

The standard theme configuration is used to manually configure themes. One configuration can
contain one or more themes. A theme configuration makes use of the common description and
spatial elements described in the layer chapter. If the metadata is not specified, it will be copied
from layers within the same node.

In order to reference layers, the theme configuration needs to know layer stores. That’s why the
first thing you need to specify are the layer stores you intend to use:

180

<Themes xmlns="http://www.deegree.org/themes/standard"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:s="http://www.deegree.org/metadata/spatial">

<LayerStoreld>layerstore</LayerStoreld>
<LayerStoreld>layerstore2</LayerStoreld>
<Theme>
</Theme>
</Themes>
Let’s have a look at the actual theme configuration. First, you have the choice to give the theme an
identifier or not. Then you can specify the description and spatial metadata (only the Title element

is mandatory here). If it does not have an identifier, it will not be requestable in the service
configuration:

<Theme>
<Identifier>roads</Identifier>
<!-- common description elements here -->
<!-- common spatial metadata elements here -->

</Theme>
After that, you can add layers and subthemes as required to the theme:

<Theme>

<Layer>roads</Layer>
<Layer layerStore="layerstore2'>highways</Layer>
<Theme>
<Theme>
</Theme>
</Theme>
</Theme>

As you can see, you can optionally specify which layer store a given layer comes from. This can be
useful if you have multiple layer stores offering a layer with the same name.

Since the names of the layers are not used when using WMS, this mechanism can be used to
combine multiple layers (configuration wise) into one (WMS wise, in deegree terms it would be one
theme with multiple layers).

The following table summarizes the configuration of a theme:

181

Option Cardinalit Value Description

y

Identifier 0..1 String The unique identifier of the layer

Description 0..1 Several The description elements described above,
Title is mandatory

Spatial metadata 0..1 Several The spatial metadata elements described
above

LegendGraphic 0..1 String Reference to a LegendGraphic

Layer 0.n String Identifier of the Layer

Theme 0.1 Several Subthemes of the theme

The optional LegendGraphic element can be used to configure a legend graphic for a theme
grouping multiple layer or subthemes. The LegendGraphic can be a local file or remote reference. A
remote reference is not recommended for production instances of deegree due to possible
availability dropouts and security reasons. The attribute outputGetLegendGraphicUrl (default value
is true) defines if the OnlineResource of LegendURL contains a GetLegendGraphic request
(outputGetLegendGraphicUrl="true”) = or references the remote resource directly
(outputGetLegendGraphicUrl="false").

11.2. Remote WMS themes

The remote WMS theme configuration can be used to extract a theme from a remote WMS
resource’s layer tree. This is most commonly used when trying to cascade a whole WMS.

The configuration is very simple, you only need to specify the remote WMS resource you want to
use, and the layer store from which layers should be extracted:

<RemoteWMSThemes xmlns="http://www.deegree.org/themes/remotewms">
<RemoteWMSId>d3</RemoteWMSId>
<LayerStorelId>d3</LayerStoreld>

</RemoteWMSThemes>

deegree will automatically add layers to the theme, if a corresponding layer exists in the layer store.
In case the layer store is also configured based on the remote WMS used here, there will be a
corresponding layer for each requestable layer from the remote WMS.

Using this kind of configuration, you can duplicate a complete WMS using 15 lines of configuration
(3 for the remote WMS, 3 for the remote WMS layer store, 4 for the theme and 5 for the WMS).

182

#description
#spatial

Chapter 12. Map styles

Style resources are used to obtain information on how to render geo objects (mostly features, but
also coverages) into maps. The most common use case is to reference them from a layer
configuration, in order to describe how the layer is to be rendered. This chapter assumes the reader
is familiar with basic SLD/SE terms. The style configurations do not depend on any other resource.

In contrast to other deegree configurations the style configurations do not have a custom format.
You can use standard SLD or SE documents (1.0.0 and 1.1.0 are supported), with a couple of deegree
specific extensions, which are described below. Please refer to the SLD and SE specifications for
reference. Additionally, this page contains specific examples below.

In deegree terms, each SLD or SE file will create a style store. In case of an SE file (usually beginning
at the FeatureTypeStyle or CoverageStyle level) the style store only contains one style, in case of an
SLD file the style store may contain multiple styles, each identified by the layer (only NamedLayers
make sense here) and the name of the style (only UserStyles make sense) when referenced later.

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 49. Style resources define how geo objects are rendered

When defining styles, take note of the log file. Upon startup the log will warn you
about potential problems or errors during parsing, and upon rendering warnings
will be emitted when rendering is unsuccessful e.g. because you had a typo in a

O geometry property name. When you’re seeing an empty map when expecting a
fancy one, check the log before reporting a bug. deegree will tolerate a lot of
syntactical errors in your style files, but you’re more likely to get a good result
when your files validate, and you have no warnings in the log.

12.1. Overview

From the point of view of the Symbology Encoding Standard, there are 5 kinds of symbolization,
which can be present in a map image:

* Point symbolization

183

https://www.ogc.org/standard/sld/
https://www.ogc.org/standard/se/

* Line symbolization
* Polygon symbolization
» Text symbolization

* Raster symbolization

The first 4 symbolization usually represent vector feature objects. Raster symbolization is used to
visualize raster data. This documentation chapter describes, how those symbolization can be
realized using OGC symbology encoding. It will lead from the underlying basics to some more
complex constructions for map visualization.

12.2. Basics

12.2.1. General Layout

The general structure of an SE-Style contains:

<FeatureTypeStyle>
<FeatureTypeName>
<Rule>

It is constructed like this:

<FeatureTypeStyle xmlns="http://www.opengis.net/se" xmlns:ogc=
"http://www.opengis.net/ogc" xmlns:sed="http://www.deegree.org/se" xmlns:deegreeogc=
"http://www.deegree.org/ogc" xmlns:plan="http://www.deegree.org/plan" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.opengis.net/se http://schemas.opengis.net/se/1.1.0/FeatureStyle.xsd
http://www.deegree.org/se https://schemas.deegree.org/core/3.6/se/symbology-1.1.0.xsd
">
<FeatureTypeName>plan:yourFeatureType</FeatureTypeName>

<Rule>

</Rule>
</FeatureTypeStyle>

Before you start, always remember that every style is read top-down. So be aware
@ the second <Rule> will overpaint the first one, the third overpaints the second and
-
so on

12.2.2. Symbolization Rules

Every specific map visualization needs its own symbolization rule. Rules are defined within the
<Rule> element. Each rule can consist of at least one symbolizer. Every rule has its own name and
description elements. The description elements are used to create the legend caption from it.

184

Depending on the type of symbolization to create, one of the following symbolizers can be used:

» <PointSymbolizer>

* <LineSymbolizer>

* <PolygonSymbolizer>

* <TextSymbolizer>

» <RasterSymbolizer>
Symbolizers can have an uom-attribute (units of measure), which determines the unit of all values
set inside the Symbolizer. The following values for UoM are supported within deegree:

* uom="pixel"

* uom="meter"

* uom="mm"
The default value is "pixel".

Within every symbolizer (except rastersymbolizers), a geometry property used for the rendering,
can be specified with the <Geometry> element. If there is no geometry specified the first geometry
property of the FeatureType will be used.

Each of the (Vector-)Symbolizer-elements has its dimensions, which are described in more detail
below:
* <LineSymbolizer> has only one dimension: the <Stroke>-element (to style the stroke).

» <PolygonSymbolizer> has two dimensions: the <Stroke> (to sytle the stroke of the polygon) and
the <Fill>-element (to style the inside of the polygon).

* <PointSymbolizer> can also contain both dimensions: the <Stroke> (to style the stroke of the
point) and the <Fill>-element (to style the inside of the point).

* <TextSymbolizer> has three dimensions: the <Label> (to set the property, which is to be styled),
the (to style the font) and the <Fill>-element (to style the inside of the font).

Stroke

To describe a <Stroke>, a number of different <SvgParameter> can be used.

* name="stroke" = The stroke (color) is defined by the hex color code (e.g. black == #000000).

* name="opacity" = Opacity can be set by a percentage number, written as decimal (e.g. 0,25 =
25% opacity).

* name="with" = Wide or thin, set your stroke-width however you want.

* name="linecap" = For linecap (ending) a stroke you can choose the following types: round,
edged, square, butt.

* name="linejoin" = Also, there are different types of linejoin possibilities: round, mitre, bevel.

* name="dasharray" = The dasharray defines where the stroke is painted and where not (e.g. "1 1"
= ---).

185

<LineSymbolizer uom="meter">
<Geometry>
<ogc:PropertyName>layer:position</ogc:PropertyName>
</Geometry>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-opacity">0.5</SvgParameter>
<SvgParameter name="stroke-width">1</SvgParameter>
<SvgParameter name="stroke-linecap">round</SvgParameter>
<SvgParameter name="stroke-linejoin">round</SvgParameter>
<SvgParameter name="stroke-dasharray">1 1</SvgParameter>
</Stroke>
</LineSymbolizer>

Fill

For the visualization of polygons, points and texts, the <Fill> element can be used additional to
styling the <Stroke>. You can set the following <SvgParameter>:

* name="fill" (color)

* name="fill-opacity"

These two <SvgParameter> are working like those from <Stroke>.

<PolygonSymbolizer uom="meter">
<Geometry>
<o
</Geometry>
<Fill>
<SvgParameter name="fill">#000000</SvgParameter>
<SvgParameter name="fill-opacity">@.5</SvgParameter>
</Fill>
<Stroke>
<ouu>
</Stroke>
</PolygonSymbolizer>

Font

For the creation of a <TextSymbolizer>, certain parameters for the displayed text have to be set.
Every <TextSymbolizer> needs a <Label> to be specified. The to be used for the text
symbolization can be set with <SvgParameter> elements. These are the possible <SvgParameter>:

* name="font-family" = Possible types are: e.g. Arial, Times Roman, Sans-Serif

* name="font-weight" = Possible types are: normal, bold, bolder, lighter

* name="font-size" = Possible values are integer values

186

With a <Fill>-element a color and opacity of the font can be defined. This method is used to show
text which is stored in your database.

<TextSymbolizer uom="meter">
<Geometry>
<o
</Geometry>
<Label>
<ogc:PropertyName>layer:displayedProperty</ogc:PropertyName>
</Label>

<SvgParameter name="font-family">Arial</SvgParameter>
<SvgParameter name="font-family">Sans-Serif</SvgParameter>
<SvgParameter name="font-weight">bold</SvgParameter>
<SvgParameter name="font-size">3</SvgParameter>

<Fill>
<o
</Fill>
</TextSymbolizer>

12.2.3. Advanced symbolization

There are numerous possibilities for advanced symbolization. This chapter describes the basic
components of advanced map stylings using symbology encoding.

Using Graphics

There are different ways to use graphical symbols as a base for map symbolization. <Mark>
elements can be used to specify well known graphics, <ExternalGraphic> elements can be used to
have external graphic files as a base for a symbolization rule.

Mark

With Marks, it is possible to use wellknown objects for symbolization as well as user-generated
content like SVGs. It is possible to use all of these for <PointSymbolizer>, <LineSymbolizer> and
<PolygonSymbolizer>.

For a <PointSymbolizer> the use of a Mark looks like the following:

<PointSymbolizer uom="meter">
<Geometry>

</Geometry>

<@Graphic>
<Mark>

187

For <LineSymbolizer> and <PolygonSymbolizer> it works like this:

<Geometry>

</Geometry>
<Stroke>
<GraphicStroke>
<Graphic>
<Mark>

The following wellknown objects can be used within Marks

e circle

* triangle
* star

* square

* X == creates a Ccross

<Mark>
<WellKnownName>triangle</WellKnownName>
<Fill>

</Fill>
</Mark>

Including an SVG graphic within a mark might look like this:

<Mark>
<OnlineResource xmlns:xLlink="http://www.w3.0rg/1999/x1link" x1link:type="simple"
xlink:href="/filepath/symbol.svg" />
<Format>svg</Format>
<Fill>

</Fill>
<Stroke>

</Stroke>
</Mark>
ExternalGraphic

<ExternalGraphic>-elements can be used to embed graphics, taken from a graphic-file (e.g. SVGs or
PNGs). The <OnlineResource> sub-element gives the URL of the graphic-file.

188

(r) Make sure you don’t forget the MIME-type in the <Format>-sub-element (e.g.
- "image/svg" or "image/png").

<Graphic>
<ExternalGraphic>
<OnlineResource xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xlink:type="simple" xlink:href="/filepath/symbol.svg" />
<Format>image/svg</Format>
</ExternalGraphic>
<Size>10</Size>

</Graphic>

Size

Of course everything has its own <Size>. The size is defined directly after <Mark> or
<ExternalGraphic>.

<Mark>

<WellKnownName>triangle</WellKnownName>
<Fill>

<SvgParameter name="fill">#000000</SvgParameter>
</Fill>

</Mark>
<Size>3</Size>

Gap

It is possible to define Gaps for graphics within <LineSymbolizer> or <PolygonSymbolizer>. For this
the <Gap>-element can be used like this:

<GraphicStroke>
<Graphic>
<Mark>
</Mark>
</Graphic>
<Gap>20</Gap>
</GraphicStroke>1

Rotation
Symbology Encoding enables the possibility to rotate every graphic around its center with the

<Rotation>-element. This goes from zero to 360 degrees. The rotation is clockwise unless it’s
negative, then it’s counter-clockwise.

189

<Graphic>
<Mark>
</Mark>
<Size>3</Size>

<Rotation>180</Rotation>
</Graphic>

Displacement

The <Displacement>-element allows to paint a graphic displaced from his given position. Negative
and positive values are possible. THe displacement must be set via the X and Y displacement
elements.

<Graphic>
<Mark>

</Mark>
<Displacement>
<DisplacementX>5</DisplacementX>
<DisplacementY>5</DisplacementY>
</Displacement>
</Graphic>

Halo

A nice possibility to highlight your font, is the <Halo>-element. The <Radius>-sub-element defines
the size of the border.

190

<TextSymbolizer uom="meter">

<Geometry>
<ogc:PropertyName>xplan:position</ogc:PropertyName>

</Geometry>

<Label>

</Label>

<LabelPlacement>

</LabelPlacement>

<Halo>
<Radius>1.0</Radius>
<Fill>
</Fill>

</Halo>

</TextSymbolizer>

12.3. Using Filters

Within symbolization rules, it is possible to use Filter Encoding expressions. How construct those
expressions is explained within the Filter Encoding chapter

12.4. Basic Examples

12.4.1. Point Symbolizer

191

<FeatureTypeStyle
xmlns="http://www.opengis.net/se"
xmlns:app="http://www.deegree.org/app"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:sed="http://www.deegree.org/se"
xmlns:deegreeogc="http://www.deegree.org/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/se
http://schemas.opengis.net/se/1.1.0/FeatureStyle.xsd http://www.deegree.org/se
https://schemas.deegree.org/core/3.6/se/symbology-1.1.0.xsd">
<Name>Weatherstations</Name>
<Rule>
<Name>Weatherstations</Name>
<Description>
<Title>Weatherstations in Utah</Title>
</Description>
<ogc:Filter>
<ogc:PropertyIsktqualTo>
<ogc:PropertyName>SomeProperty</ogc:PropertyName>
<ogc:Literal>100</ogc:Literal>
</ogc:PropertyIsEqualTo>
</ogc:Filter>
<PointSymbolizer>
<Graphic>
<Mark>
<WellKnownName>square</WellKnownName>
<Fill>
<SvgParameter name="fill">#FF0000</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-width">1</SvgParameter>
</Stroke>
</Mark>
<Size>13</Size>
</Graphic>
</PointSymbolizer>
</Rule>
</FeatureTypeStyle>

12.4.2. Line Symbolizer

192

<FeatureTypeStyle
xmlns="http://www.opengis.net/se"
xmlns:app="http://www.deegree.org/app"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:sed="http://www.deegree.org/se"
xmlns:deegreeogc="http://www.deegree.org/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/se
http://schemas.opengis.net/se/1.1.0/FeatureStyle.xsd http://www.deegree.org/se
https://schemas.deegree.org/core/3.6/se/symbology-1.1.0.xsd">
<Name>Railroads</Name>
<Rule>
<Name>Railroads</Name>
<LineSymbolizer>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-opacity">1.0</SvgParameter>
<SvgParameter name="stroke-width">0.3</SvgParameter>
</Stroke>
<PerpendicularOffset>1.5</PerpendicularOffset>
</LineSymbolizer>
<LineSymbolizer>
<Stroke>
<SvgParameter name="stroke">#ffffff</SvgParameter>
<SvgParameter name="stroke-opacity">1.0</SvgParameter>
<SvgParameter name="stroke-width">1.5</SvgParameter>
</Stroke>
</LineSymbolizer>
<LineSymbolizer>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-opacity">1.0</SvgParameter>
<SvgParameter name="stroke-width">0.3</SvgParameter>
</Stroke>
<PerpendicularOffset>-1.5</PerpendicularOffset>
</LineSymbolizer>
</Rule>
</FeatureTypeStyle>

12.4.3. Polygon Symbolizer

193

<FeatureTypeStyle
xmlns="http://www.opengis.net/se"
xmlns:app="http://www.deegree.org/app"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:sed="http://www.deegree.org/se"
xmlns:deegreeogc="http://www.deegree.org/ogc"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/se
http://schemas.opengis.net/se/1.1.0/FeatureStyle.xsd http://www.deegree.org/se
https://schemas.deegree.org/core/3.6/se/symbology-1.1.0.xsd">
<Name>LandslideAreas</Name>
<Rule>
<Name>LandslideAreas</Name>
<Description>
<Title>LandslideAreas</Title>
</Description>
<PolygonSymbolizer>
<Fill>
<SvgParameter name="fill">#cc3300</SvgParameter>
<SvgParameter name="fill-opacity">0.3</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-opacity">1.0</SvgParameter>
<SvgParameter name="stroke-width">1</SvgParameter>
</Stroke>
</PolygonSymbolizer>
</Rule>
</FeatureTypeStyle>

12.4.4. Text Symbolizer

194

<Featu
xmlns

xmlns:
xmlns:
xmlns:

xmlns

xmlns:

Xsi:s
http:/
https:
<Name>

<Rul
<N

reTypeStyle

="http://www.opengis.net/se"
app="http://www.deegree.org/app"
ogc="http://www.opengis.net/ogc"
sed="http://www.deegree.org/se"
:deegreeogc="http://www.deegree.org/ogc"
xsi="http://www.w3.0rg/2001/XMLSchema-instance"
chemalocation="http://www.opengis.net/se
/schemas.opengis.net/se/1.1.0/FeatureStyle.xsd http://www.deegree.org/se
//schemas.deegree.org/core/3.6/se/symbology-1.1.0.xsd">
Municipalities</Name>

e>

ame>Municipalities</Name>

<Description>

</

<Title>Municipalities</Title>
Description>

<MaxScaleDenominator>200000</MaxScaleDenominator>

<T

extSymbolizer>
<Label>
<ogc:PropertyName>app:NAME</ogc:PropertyName>
</Label>

<SvgParameter name="font-family">Arial</SvgParameter>
<SvgParameter name="font-family">Sans-Serif</SvgParameter>
<SvgParameter name="font-weight">bold</SvgParameter>
<SvgParameter name="font-size">12</SvgParameter>

<Halo>
<Radius>1</Radius>
<Fill>
<SvgParameter name="fill-opacity">1.0</SvgParameter>
<SvgParameter name="fill">#fefdC3</SvgParameter>
</Fill>
</Halo>
<Fill>
<SvgParameter name="fi11">#000000</SvgParameter>
</Fill>

</TextSymbolizer>

</Ru
</Feat

12.5.

le>
ureTypeStyle>

SLD/SE clarifications

This chapter is meant to clarify deegree’s behaviour when using standard SLD/SE constructs.

12.5.1.

Perpendicular offset/polygon orientation

For polygon rendering, the orientation is always fixed, and will be corrected if a feature store yields
inconsistent geometries. The outer ring is always oriented counterclockwise, inner rings are

195

oriented clockwise.

A positive perpendicular offset setting results in an offset movement in the outer direction, a
negative setting moves the offset into the interior. For inner rings the effect is flipped (a positive
setting moves into the interior of the inner ring, a negative setting moves into the exterior of the
inner ring).

12.5.2. ScaleDenominators

The use of MinScaleDenominators and MaxScaleDenominators within SLD/SE files can easily be
misunderstood because of the meaning of a high or a low scale. Therefore, this is clarified here
according to the standard. In general the MinScaleDenominator is always a smaller number than
the MaxScaleDenominator. The following example explains, how it works:

<MinScaleDenominator>25000</MinScaleDenominator>
<MaxScaleDenominator>50000</MaxScaleDenominator>

This means, that the Symbolizer is being used for scales between 1:25000 and 1:50000.

12.6. deegree specific extensions

deegree supports some extensions of SLD/SE and filter encoding to enable more sophisticated
styling. The following sections describe the respective extensions for SLD/SE and filter encoding.
For several specific extensions, there is a deegree SE XML Schema.

12.6.1. SLD/SE extensions

Use of alternative Symbols within the WellKknownName

The SLD/SE specification defines a list of standard symbols, which are circle, triangle, star, square
and x. In addition to these standard symbols, other predefined and freely configurable symbols are
also available. These are described in the following chapters.

For reference each symbol is shown with the following style.

<Fill>
<SvgParameter name="fill">#FF0000</SvgParameter>
<SvgParameter name="fill-opacity">@.4</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-width">1</SvgParameter>
</Stroke>

Predefined symbols

Table 1. Standard Symbols defined by SLD/SE specification

196

https://schemas.deegree.org/core/3.6/se/

Ocircle ﬁtriangle ¥ star
[square X x

Table 2. Extended Symbols shape://

\ shape://backslash B~ shape://carrow B> shape://ccarrow
== shape://coarrow - shape://dot — shape://horline
= shape://oarrow —|— shape://plus / shape://slash
>< shape://times | shape://vertline

Table 3. Extended Symbols extshape://

‘ﬂ‘ extshape://arrow “ extshape://emicircle ‘ﬂ‘ extshape://narrow

{}; extshape://sarrow 4 extshape://triangle v = extshape://triangleemicircle
Table 4. Extended Symbols qgis://

ﬂ qgis://arrow » qgis://arrowhead O qgis://circle
—I—qgis://cross ><qg1's://cr0552 El']:'qgis://crossfﬂl

B_ qgis://diagonalhalfsquare <> qgis://diamond M\ qgis://equilateral_triangle
P qgis://filled_arrowhead |:| qgis://halfsquare O qgis://hexagon

B qgis://lefthalftriangle | qgis://line O qgis://pentagon

a qgis://quartercircle = qgis://quartersquare Dqgis://rectangle

fj' qgis://regular_star ﬂ qgis://righthalftriangle - qgis://semicircle
ﬁqgis://star d qgis://thirdcircle A\ qgis://triangle

Custom arrow with extshape://arrow

The symbol extshape://arrow can be adapted to your own needs with three optional parameters
which are:

* t: thickness of the arrow base, in a value range between 0 and 1 with a standard of 0.2

* hr: height over width ratio, in a value range between 0 and 1000 with a standard of 2

197

* ab: arrow head base ration, in a value range between 0 and 1 with a standard of 0.5

ALALLLTTTTT

Figure 50. Example of extshape://arrow which varies ab between 0.1 and 1.0

—+TTrT T T T Y

Figure 51. Example of extshape://arrow which varies hr between 0.2 and 2.0

STttt ttaad

Figure 52. Example of extshape://arrow which varies t between 0.1 and 1.0

Example

<WellKnownName>extshape://arrow?t=0.2& hr=2&ab=0.5</WellKnownName>

Custom Symbol from SVG path svgpath://

It is also possible to define a symbol from an SVG path data. The syntax of SVG path data is
described at https://www.w3.0org/TR/SVG/paths.html#PathData

Table 5. Example of custom symbol with “svgpath://"

svgpath://m 8,14 0,-6 h -4.5 c 0,0 0,-7.5 6.6,-7.5 6,0 6.5,7.5 6.6,7.5 1 -4.5,0 0,6
zm-4,0v-2h2v2z
|

Use Symbol from character code ttf://

Also, TrueType font files can be used as source for symbols. For TrueType fonts installed at System
or Java level the syntax is ttf://Font Nameficode. If the font is not installed but available it can be
specified absolute or relative as ttf://font.ttf#code.

The character code has to be specified in hexadecimal notation prefixed with 0x, U+ or \u.

Table 6. Example of ttf:// symbols

ttf://Lucida Sans#0x21BB ttf://../fontawesome-webfont.ttf#0xf13d
ttf://Lucida Sans#U+21BB
ttf://Lucida Sans#\u21bb

7 The character code for fonts installed at System level can be looked up via the
- system Character Map application.

Custom Symbol from Well Known Text wkt://

It is furthermore possible to specify your own symbols as Well Known Text (WKT).

The following geometry types are currently supported:

198

https://www.w3.org/TR/SVG/paths.html#PathData

o LINESTRING

* LINEARRING

* POLYGON
 MULTIPOINT
 MULTILINESTRING
* MULTICURVE

* MULTIPOLYGON

* GEOMETRYCOLLECTION
* CIRCULARSTRING
* COMPOUNDCURVE
* CURVEPOLYGON

More information about WKT can be found here.

0,0 ?.

Table 7. Example of wkt:// symbols

O wkt://POLYGON((-1

-1.5,1 0,0 1.5,-1 0))

wkt://COMPOUNDCURVE((-7.73 -4.59, -7.65 6.02,
0.26 6.07, -1.72 4.89, 0.72 4.54, -1.91 3.51,
0.67 3.05, -1.75 2.14, 0.70 1.68, -1.74 1.28),

CIRCULARSTRING (-1.74 1.28,

1.43))

-3.56 2.74, -5.48

If unexpected display problems occur with complex symbols (e.g. arcs) a linearized
display can be used instead. To switch to the linearized display please change the

prefix from wkt:// to wktlin://.

Spacing around the symbol

For each symbol except the symbols circle, triangle, star, square and x can be defined with an
explicit bound. This is particularly useful if you want to display an area fill with a symbol.

This explicit limit can be specified either as width and height or as the lower left and upper right

corner.

The syntax is: wellknownname[width,height] or wellknownname[mix,miny,maxx,maxy]

% Regular symbol qqgis://circle

0000

[eNeNoNeN

[eNoNoNoN

Symbol with explicit bounds

qgis://circle[-1,-1,3,2]

The width and height must be entered in the coordinate system of the symbol.
@ Most symbols are defined around the zero point with a width of 1.0. Accordingly, it
ot is recommended to start with the values [1,1] or [-0.5,-0.5,0.5,0.5].

199

https://en.wikipedia.org/wiki/Well-known_text

Simplified hatches

To make hatching configuration easier, a new function HatchingDistance has been added, which
allows the user to define the size by specifying hatching angle and desired line spacing.

The first parameter is the hatching angle, the second is the line spacing in the unit of the
symboliser.

Table 8. Example hatches

Rotation WellKnownName Rotation WellKknownName
0 shape://slash 0 shape://backslash
0 shape://times 10 shape://vertline

Symbolizer used in previous example

<!-- PolygonSymbolizer for outline omitted -->
<PolygonSymbolizer uom="http://www.opengeospatial.org/se/units/pixel" xmlns=
"http://www.opengis.net/se">
<Fill>
<GraphicFill>
<Graphic>
<Mark>
<WellKnownName>shape://slash</WellKnownName>
<Stroke>
<SvgParameter name="stroke">#000000</SvgParameter>
<SvgParameter name="stroke-width">1</SvgParameter>
<SvgParameter name="stroke-linecap">butt</SvgParameter>
</Stroke>
</Mark>
<Size>
<ogc:Function name="HatchingDistance">
<ogc:Literal>45</ogc:Literal>
<ogc:Literal>10</ogc:Literal>
</ogc:Function>
</Size>
<Rotation>0</Rotation>
</Graphic>
</GraphicFill>
</Fill>
</PolygonSymbolizer>

200

For of the shelf hates, which will create nice results, use the mark symbol
@ shape://slash, shape://backslash or shape://times for 45°, shape://horline for 0°
- and shape://vertline for 90° hatches. For hatching with user-defined angles it is
recommended to use shape://vertline.

With user-defined distances or angles that are not divisible by 45, rounding
inaccuracies may occur and become visible in the results depending on the used

)

styles.
7 To get an even hatching we recommend to set the parameter stroke-linecap to
- butt. This is especially recommended for transparent hatches

Use of TTF files as Mark symbols

You can use TrueType font files to use custom vector symbols in a Mark element:

<Mark>
<OnlineResource xlink:href="filepath/yousans.ttf" />
<Format>ttf</Format>
<MarkIndex>99</MarkIndex>
<Fill>
<SvgParameter name="fi1l1">#000000</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke-opacity">0</SvgParameter>

</Stroke>
</Mark>

In order to determine the correct index value of the used vector symbol in your TrueType font file,
there are several options available:

* The most convenient way would be by using a JavaScript parser like opentype.js, check
https://opentype.js.org/glyph-inspector.html for a usable live-demo.

* Otherwise, you can check the index value by using Microsoft Word, as explained in
https://support.esri.com/en/technical-article/000004293.

* At last, you could determine the index value by manually reading the cmap table of your
TrueType font file. If you are interested in this approach, take a look into a post from the
deegree mailing list.

Label AutoPlacement

deegree has an option for SE LabelPlacement to automatically place labels on the map. To enable
AutoPlacement, you can simply set the "auto” attribute to "true".

201

https://opentype.js.org/glyph-inspector.html
https://support.esri.com/en/technical-article/000004293
https://sourceforge.net/p/deegree/mailman/deegree-users/thread/20130110115808.GB3576%40theologicum.occamlabs.local/#msg30331881

<LabelPlacement>
<PointPlacement auto="true">
<Displacement>
<DisplacementX>0</DisplacementX>
<DisplacementY>0</DisplacementY>
</Displacement>
<Rotation>0</Rotation>
</PointPlacement>
</LabelPlacement>

(r) AutoPlacement for labels only works for PointPlacement. AutoPlacement for
- LinePlacement is not implemented yet.

LinePlacement extensions

There are additional deegree specific LinePlacement parameters available to enable more
sophisticated text rendering along lines:

Option Value Defau Description
It

PreventUpsideDown Boolean false Avoids upside down placement of text

Center Boolean false Places the text in the center of the line
WordWise Boolean true Tries to place individual words instead of individual
characters
<LinePlacement>

<IsRepeated>false</IsRepeated>
<InitialGap>10</InitialGap>
<PreventUpsideDown>true</PreventUpsideDown>
<Center>true</Center>
<WordWise>false</WordWise>

</LinePlacement>

ExternalGraphic extensions

deegree extends the OnlineResource element of ExternalGraphics to support ogc:Expressions as
child elements. Example:

<ExternalGraphic>
<OnlineResource>
<ogc:PropertyName>app:icon</ogc:PropertyName>
</0nlineResource>
<Format>image/svg</Format>
</ExternalGraphic>

202

Text with rectangular Halo

For the cartographic design of text, it is possible to place a rectangular box behind the text instead
of a halo effect. To enable the rectangular box behind a text use a negative value for the Radius of
Halo in the TextSymbolizer.

Example Example

Figure 53. Example of regular Halo (Radius of 3.0) on the left and rectangular Halo (Radius of -3.0) on the
right.

Symbolizer used in previous example

<TextSymbolizer>
<!-- Label omitted -->

<SvgParameter name="font-family">Sans-Serif</SvgParameter>
<SvgParameter name="font-size">30</SvgParameter>

<Halo>
<Radius>-3.0</Radius>
<Fill>
<SvgParameter name="fill">#FF0000</SvgParameter>
<SvgParameter name="fill-opacity">0.4</SvgParameter>
</Fill>
</Halo>
</TextSymbolizer>

GraphicStroke extensions

By default, a GraphicStroke is drawn repeatedly, but it can also be only drawn once if the parameter
deegree-graphicstroke-position-percentage is defined as a percentage of the line length. The
parameter deegree-graphicstroke-rotation controls whether the Graphic is rotated to follow the
angle of the current line segment or not, values larger than zero enables this. If not specified the
Graphic will follow the angle of the line.

Rendering of Mark along a geometry

When deegree renders strokes with Mark it will use the Fill and Stroke which are defined as sub
elements of Mark instead of the parameter for color, line-width and opacity of Stroke. For Mark
whose Fill or Stroke should be omitted, this can be realized by setting ‘:--opacity to zero. Example:

203

<Stroke>
<GraphicStroke>
<Graphic>
<Mark>
<WellKnownName>triangle</WellKnownName>
<Fill>
<SvgParameter name="fill-opacity">0</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke-opacity">0</SvgParameter>
</Stroke>
</Mark>
<Size>20</Size>
</Graphic>
</GraphicStroke>
<SvgParameter name="deegree-graphicstroke-position-percentage">50</SvgParameter>
<SvgParameter name="deegree-graphicstroke-rotation">0</SvgParameter>
</Stroke>

A typical usage is to draw an arrowhead on a line. This can be achieved by using a
filled triangle Mark which is rotated 90 degrees to the left (-90) with an anchor

o point of 0.75 / 0.5 and deegree-graphicstroke-position-percentage of @ for the
beginning of a line. To draw it at the end of a line, the Mark has to be rotated 90
degrees to the right (90) with an anchor point of 0.25 / 0.5 and deegree-
graphicstroke-position-percentage of 100.

Rendering of images or SVGs along a geometry

Both images and SVG can be drawn along a geometry, but it should be noted that these are best
suited for signatures that are drawn only once or with some gap. Example of a single SVG at the
middle of the line:

<Stroke>
<GraphicStroke>
<Graphic>
<ExternalGraphic>
<OnlineResource xlink:href="./sample.svg" />
<Format>svg</Format>
</ExternalGraphic>
<Size>20</Size>
</Graphic>
</GraphicStroke>
<SvgParameter name="deegree-graphicstroke-position-percentage">50</SvgParameter>
</Stroke>

Rendering of SVGs as Mark

To draw only the outline or fill of an SVG with a single color, an SVG can be used as a Mark. Example:

204

<Stroke>
<GraphicStroke>
<Graphic>
<Mark>
<OnlineResource xlink:href="./sample.svg" />
<Format>svg</Format>
<Fill>
<SvgParameter name="fill">#FF0000</SvgParameter>
</Fill>
<Stroke>
<SvgParameter name="stroke-opacity">0.0</SvgParameter>
</Stroke>
</Mark>
<Size>20</Size>
</Graphic>
</GraphicStroke>
</Stroke>

Previous versions would have rendered SVG defined in an Graphic/
o ExternalGraphic/OnlineResource like the Mark example above. These have either

their configuration converted to Graphic/Mark/OnlineResource or the option to not

render SVGs like images has to be set for the instance, see Appendix for details.

12.6.2. SE & FE Functions

There are a couple of deegree specific functions which can be expressed as standard OGC function
expressions in SLD/SE. Additionally, deegree has support for all the unctions defined within the SE
standard.

FormatNumber

This function is needed to format number attributes. It can be used like in the following example:

<FormatNumber xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="">
<NumericValue>
<ogc:PropertyName>app:SHAPE_LEN</ogc:PropertyName>
</NumericValue>
<Pattern>#iiiiiiiiiit. 00</Pattern>
</FormatNumber>

FormatDate

This function is fully supported, although not fully tested with all available schema types
mentioned in the spec.

205

<FormatDate xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="">
<DateValue>
<ogc:PropertyName>app: TIMESTAMP</ogc:PropertyName>
</DateValue>
<Pattern>DD</Pattern>
</FormatDate>

ChangeCase

This function is used to change the case of property values.

<ChangeCase xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue=""
direction="toUpper">
<StringValue>
<ogc:PropertyName>app:text</ogc:PropertyName>
</StringValue>
</Change(Case>

Concatenate

With the concatenate function it is possible to merge the values of more than one property to a
chain.

<Concatenate xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="">
<StringValue>
<ogc:PropertyName>app:texti</ogc:PropertyName>
</StringValue>
<StringValue>
<ogc:PropertyName>app:text2</ogc:PropertyName>
</StringValue>
<StringValue>
<ogc:PropertyName>app:text3</ogc:PropertyName>
</StringValue>
</Concatenate>

Trim

The trim function is used to trim string property values.

206

<Trim xmlns:ogc="http://www.opengis.net/ogc" xmlns:app="http://www.deegree.org/app"
xmlns="http://www.opengis.net/se" fallbackValue="" stripOffPosition="both">
<StringValue>
<ogc:PropertyName>app:text</ogc:PropertyName>
</StringValue>
</Trim>

StringLength

With the StringLength function it is possible to calculate the length of string property values.

<StringlLength xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="">
<StringValue>
<ogc:PropertyName>app:text</ogc:PropertyName>
</StringValue>
</StringlLength>

Substring

With the substring function it is possible to only get a specific substring of a string property.

<Substring xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="">
<StringValue>
<ogc:PropertyName>app:text</ogc:PropertyName>
</StringValue>
<Position>1</Position>
<Length>
<ogc:Sub>
<StringPosition fallbackValue=
<LookupString>-</LookupString>
<StringValue>
<ogc:PropertyName>app:text</ogc:PropertyName>
</StringValue>
</StringPosition>
<ogc:Literal>1</ogc:Literal>
</o0gc:Sub>
</Length>
</Substring>

searchDirection="frontToBack">

StringPosition

The StringPosition function is made to get the literal at a specific position from a string property.

207

<StringPosition xmlns:app="http://www.deegree.org/app" xmlns=
"http://www.opengis.net/se" fallbackValue="" searchDirection="frontToBack">

<LookupString>-</LookupString>

<StringValue>

<ogc:PropertyName xmlns:ogc="http://www.opengis.net/ogc">

app:text</ogc:PropertyName>

</StringValue>
</StringPosition>

Categorize, Interpolate, Recode

These functions can operate both on alphanumeric properties of features and on raster data. For
color values we extended the syntax a bit to allow for an alpha channel: #99ff0000 is a red value
with an alpha value of 0x99. This allows the user to create e.g. an interpolation from completely
transparent to a completely opaque color value. To work on raster data you’ll have to replace the
PropertyName values with Rasterdata.

For Interpolate only linear interpolation is currently supported.

<Categorize xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/se"
xmlns:ogc="http://www.opengis.net/ogc" fallbackValue="#fefdC3">
<LookupValue>
<ogc:PropertyName>app:POP2000</ogc:PropertyName>
</LookupValue>
<Value>#FFE9D8</Value>
<Threshold>1000</Threshold>
<Value>#FBCFAC</Value>
<Threshold>10000</Threshold>
<Value>#FAAC6F</Value>
<Threshold>25000</Threshold>
<Value>#FD913D</Value>
<Threshold>100000</Threshold>
<Value>#FF7000</Value>
</Cateqorize>

208

<Interpolate xmlns:ogc="http://www.opengis.net/ogc" xmlns:app=
"http://www.deegree.org/app" xmlns="http://www.opengis.net/se" fallbackValue="#005C29"
method="color">
<LookupValue>
<ogc:PropertyName>app:CODE</ogc:PropertyName>
</LookupValue>
<InterpolationPoint>
<Data>-1</Data>
<Value>#005C29</Value>
</InterpolationPoint>
<InterpolationPoint>
<Data>100</Data>
<Value>#067A3A</Value>
</InterpolationPoint>
<InterpolationPoint>
<Data>300</Data>
<Value>#03A64(C</Value>
</InterpolationPoint>
<InterpolationPoint>
<Data>500</Data>
<Value>#00CF5D</Value>
</InterpolationPoint>
<InterpolationPoint>
<Data>1000</Data>
<Value>#ffffff</Value>
</InterpolationPoint>
</Interpolate>

209

<Recode xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/se"
fallbackValue="">
<LookupValue>
<ogc:PropertyName>app:code</ogc:PropertyName>
</LookupValue>
<MapItem>
<Data>1000</Data>
<Value>water</Value>
</MapItem>
<MapItem>
<Data>2000</Data>
<Value>nuclear</Value>
</MapItem>
<MapItem>
<Data>3000</Data>
<Value>solar</Value>
</MapItem>
<MapItem>
<Data>4000</Data>
<Value>wind</Value>
</MapItem>
</Recode>

General XPath functions

Many useful things can be done by simply using standard XPath 1.0 functions in PropertyName
elements.

Access the (local) name of an element (e.g. the name of a referenced feature / subfeature).

<PropertyName xmlns:app="http://www.deegree.org/app">app:subfeature/*/local-
name()</PropertyName>

210

Chapter 13. Filter Encoding

deegree makes extensive use of the OGC Filter Encoding standard. Within deegree there are
implementations of the versions 1.1.0 and 2.0.0 of these standards and several extensions and
additional functions. This chapter is meant to explain the filter capabilities of deegree which can be
used within Map styles and Web Feature Service (WFS) requests.

13.1. Filter Operators

The purpose of FE is to have a standardized way for defining selection criteria on data. This
requires the definition of operators for the creation of filter expressions. Within this section, the
supported operators are explained. Additionally, there is information about deegree specific
behaviour. Depending on the version of FE, syntax may differ. In the following, FE 1.1.0 syntax is
used.

13.1.1. Arithmetic operators

FE enables the use of the following arithmetic operators:

Add: used for addition

Sub: used for subtraction

Mul: used for multiplication

e Div: used for division

Example:
<Add>
<PropertyName>app:ID</PropertyName>

<Literal>15</Literal>
</Add>

13.1.2. Logical operators

FE enables the use of the following logical operators:

¢ And: Links two conditions with AND
¢ Or: links two conditions with OR

* Not: negates a condition

Example:

211

<Not>
<PropertyName>app:ID</PropertyName>
<Literal>15</Literal>

</Not>

13.1.3. Comparison operators

deegree has implementations for the following list of comparison operators:

» PropertyIsEqualTo: Evaluates if a property value equals to another value.

* PropertyIsNotEqualTo: Evaluates if a property value differs from another value.

* PropertyIsLessThan: Evaluates if a property value is smaller than another value.

* PropertylIsGreaterThan: Evaluates if a property value is greater than another value.

* PropertyIsLessThanOrEqualTo: Evaluates if a property value is smaller than or equal to another
value.

* PropertyIsGreaterThanOrEqualTo: Evaluates if a property value is greater than or equal to
another value.

* PropertylIslLike: Evaluates if a property value is like another value. It compares string values
which each other.

* PropertyIsNull: Evaluates if a property value is NULL.

» PropertyIsBetween: Evaluates if a property value is between 2 defined values.

Example:

<PropertyIsEqualTo>
<PropertyName>SomeProperty</PropertyName>
<Literal>100</Literal>
</PropertyIsEqualTo>

13.1.4. Spatial operators
With deegree you can make use of the following spatial operators:

* Equals: Evaluates if geometries are identical

* Disjoin: Evaluates if geometries are spatially disjoined

* Touches: Evaluates if geometries are spatially touching

* Within: Evaluates if a geometry is spatially within another
* Overlaps: Evaluates if geometries are spatially overlapping
* (Crosses: Evaluates if geometries are spatially crossing

» Intersects: Evaluates if geometries are spatially intersecting. This is meant as the opposite of
disjoin.

212

» Contains: Evaluates if a geometry spatially contains another.

DWithin: Evaluates if a geometry is within a specific distance to another.

* Beyond: Evaluates if a geometry is beyond a specific distance to another.

BBOX: Evaluates if a geometry spatially intersects with a given bounding box.

Example:

<Overlaps>
<PropertyName>Geometry</PropertyName>
<gml:Polygon srsName="EPSG:4258">
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:posList> ... </gml:posList>
</gml:LinearRing>
</gml:outerBoundaryIs>
</gml:Polygon>

</0verlaps>
7 For further reading on spatial operators, please refer to the OGC Simple Features
- Specification For SQL.

13.2. Filter expressions

For the use within map styles or WES requests, filter expressions can be constructed from the above
operators to select specific data. This section gives some examples for the use of such filter
expressions.

13.2.1. Simple filter expressions

Comparative filter expression

<Filter>
<PropertyIsEqualTo>
<PropertyName>SomeProperty</PropertyName>
<Literal>100</Literal>
</PropertyIsEqualTo>
</Filter>

This filter expressions shows, how filter expressions with a comparative filter are constructed. In
the example above, the property SomeProperty is evaluated, if it equals to the value of "100".

Spatial filter expression

213

https://www.ogc.org/standards/sfs
https://www.ogc.org/standards/sfs

<Filter>
<Overlaps>
<PropertyName>Geometry</PropertyName>
<gml:Polygon srsName="EPSG:4258">
<gml:outerBoundaryIs>
<gml:LinearRing>
<gml:posList> ... </gml:posList>
</gml:LinearRing>
</gml:outerBoundaryIs>
</gml:Polygon>
</Overlaps>
</Filter>

This filter expressions shows, how filter expressions with a spatial filter are constructed. In this
example, the defined filter looks up, if the property geometry overlaps with the defined polygon of
"..." (geometry values removed for better readability).

13.2.2. Advanced filter expressions

Multiple filter operators

<Filter>
<And>
<PropertylIslLessThan>
<PropertyName>DEPTH</PropertyName>
<Literal>30</Literal>
</PropertyIsLessThan>
<Not>
<Disjoint>
<PropertyName>Geometry</PropertyName>
<gml:Envelope srsName="EPSG:4258">
<gml:lowerCorner>13.0983 31.5899</gml:1lowerCorner>
<gml:upperCorner>35.5472 42.8143</gml:upperCorner>
</gml:Envelope>
</Disjoint>
</Not>
</And>
</Filter>

This more complex filter expressions shows, how to make use of combinations of filter operators.
THe given filter expression evaluates if the value of the property DEPTH is smaller than "30" and if
the geometry property named Geometry is spatially disjoint with the given envelope.

PropertylsLike with a function

214

<fes:Filter xmlns:fes="http://www.opengis.net/fes/2.0">
<fes:PropertyIsLike wildCard="*" singleChar="#" escapeChar="1">
<fes:ValueReference>name</fes:ValueReference>
<fes:Function name="normalize">
<fes:Literal>FALkenstrasse</fes:Literal>
</fes:Function>
</fes:PropertylIsLike>
</fes:Filter>

This example shows, how functions can be used within filter expressions. Within the given
example, the "name" property is evaluated, if it is like the Literal FAlkenstrasse. Using a function for
the evaluation of the Literal means, that the value is processed with the function before the filter
operator handles it. In the concrete case this means a normalization of the value (Which is not
usable by default with deegree).

@ Please note, the use of functions within PropertylsLike filter operators is only
- possible with FE 2.0. This is the reason for the FE 2.0 notation.

13.2.3. Filter expressions on xlink:href attributes

Example for filtering on xlink:href attributes:

<fes:Filter xmlns:fes="http://www.opengis.net/fes/2.0" xmlns:xlink=
"http://www.w3.0rg/1999/x1ink">
<fes:PropertyIsEqualTo>
<fes:PropertyName>property/@xlink:href</fes:PropertyName>
<fes:Literal>100</fes:Literal>
</fes:PropertylsEqualTo>
</fes:Filter>

deegree applies the filter to the static value of the attribute. This just works if the feature store is
configured a certain way. For example, this can be useful if a user wants to filter on INSPIRE
codelists.

Chapter Mapping strategies for xlink:href attributes describes how the configuration of the feature
store is done and provides further details regarding usage.

13.3. Custom FE functions

Besides the filter capabilities described above, FE defines Functions to be used within filter
expressions. deegree offers the capability to use a nice set of custom FE functions for different
purposes. These are explained within the following chapter.

13.3.1. Area

The area function is the first in a row of custom geometry functions which can be used within

215

deegree. With the area function it is possible to get the area of a geometry property. If multiple
geometry nodes are selected, multiple area values are calculated.

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="Area">

<PropertyName>app:geometry</PropertyName>
</Function>

13.3.2. Length

This function calculates the length of a linestring/perimeter of a polygon. If multiple geometry
nodes are selected, multiple length values are calculated.

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="Length">

<PropertyName>app:geometry</PropertyName>
</Function>

13.3.3. Centroid

This function calculates the centroid of a polygon. If multiple geometry nodes are selected, multiple
centroids are calculated.

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="Centroid">

<PropertyName>app:geometry</PropertyName>
</Function>

13.3.4. InteriorPoint

This function calculates an interior point within a polygon. If multiple geometry nodes are selected,
multiple centroids are calculated. Useful to place text on a point within a polygon (centroids may
not actually be a point on the polygon).

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="InteriorPoint">

<PropertyName>app:geometry</PropertyName>
</Function>

13.3.5. IsPoint, IsCurve, IsSurface
Takes one parameter, which must evaluate to exactly one geometry node.

This function returns true, if the geometry is a point/multipoint, curve/multicurve or
surface/multisurface, respectively.

216

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="IsCurve">

<PropertyName>app:geometry</PropertyName>
</Function>

13.3.6. GeometryFromWKT

Useful to create a constant geometry valued expression.

<Function xmlns="http://www.opengis.net/ogc" name="GeometryFromWKT">
<Literal>EPSG:4326</Literal>
<Literal>POINT(0.6 0.7)</Literal>

</Function>

13.3.7. MoveGeometry
Useful to displace geometries by a certain value in x and/or y direction.

To shift 20 geometry units in y direction:

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="MoveGeometry">

<PropertyName>app:geometry</PropertyName>

<Literal>0</Literal>

<Literal>20</Literal>
</Function>

13.3.8. 1Div

Integer division discarding the remainder.

<Function xmlns:app="http://www.deegree.org/app" xmlns="http://www.opengis.net/ogc"
name="idiv">

<PropertyName>app:count</PropertyName>

<Literal>20</Literal>
</Function>

13.3.9. iMod
Integer division resulting in the remainder only.
<Function xmlns="http://www.opengis.net/ogc" name="ExtraProp">

<Literal>planArt</Literal>
</Function>

217

13.3.10. ExtraProp

Access extra (hidden) properties attached to feature objects. The availability of such properties
depends on the loading/storage mechanism used.

<Function xmlns="http://www.opengis.net/ogc" name="ExtraProp">
<Literal>planArt</Literal>
</Function>

13.3.11. GetCurrentScale

The GetCurrentScale function takes no arguments, and dynamically provides you with the value of
the current map scale denominator (only to be used in GetMap requests!). The scale denominator
will be adapted to any custom pixel size you may be using in your request, and is the same scale
denominator the WMS uses internally for filtering out layers/style rules.

Let’s have a look at an example:

<sld:SvgParameter name="stroke-width">
<ogc:Function name="idiv">
<ogc:Literal>500000</ogc:Literal>
<ogc:Function name="GetCurrentScale" />
</ogc:Function>
</sld:SvgParameter>

In this case, the stroke width will be one pixel for scales around 500000, and will get bigger as you
zoom in (and the scale denominator gets smaller). Scale denominators above 500000 will yield
invisible strokes with a width of zero.

13.3.12. env

The env function takes two parameters and makes it possible to provide name/value pairs to styles,
so that more dynamic styles are possible.

<Function xmlns="http://www.opengis.net/ogc" name="env">
<Literal>size</Literal>
<Literal>42</Literal>

</Function>

These paris can be passed as env parameter alongside the usual GetMap request parameters.
Multiple name:value pairs have to be separated by semicolons (---&env=size:33;color:FF0000&---).

The second parameter must be the default value that is returned if no pair with the specified name
was found.

218

The following parameters are predefined and cannot be passed:

Name Type Description

wms_bbox Envelope envelope (GetMap request)

wIms_Crs ICRS coordinate system (GetMap request)
wIms_srs String coordinate system name (GetMap request)
wms_width Integer width in pixel (GetMap request)
wms_height Integer height in pixel (GetMap request)
wms_scale_denominator Double scale (GetMap request)

219

Chapter 14. Server connections

Server connections are workspace resources that provide connections to remote services. These
connections can then be used by other workspace resources. Some common example use cases:
 JDBC connection: Used by SQL feature stores to access the database that stores the feature data

* JDBC connection: Used by SQL ISO metadata stores to access the database that stores the
metadata records

* WMS connection: Used by remote WMS layers to access remote WMS
* WMS connection: Used by remote WMS tile stores to access remote WMS
* WMTS connection: Used by remote WMTS tile stores to access remote WMTS

There are currently two categories of server connection resources, JDBC connections (to connect to
SQL databases) and remote OWS connections (to connect to other OGC webservices).

/_ deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS)

- /

Figure 54. Server connection resources define how to obtain a connection to a remote server

Processes

14.1. JDBC connections

These resources define connections to SQL databases, such as PostgreSQL/PostGIS, Oracle Spatial or
Microsoft SQL Server.

deegree currently supports the following backends:

» PostgreSQL 12+ with PostGIS extension 3.0+
* Oracle Spatial 19.%, 21.x and 23.3
o See compatibility matrix of driver version 23.3
* Microsoft SQL Server 2012, 2014, 2016, 2017 and 2019

o See compatibility matrix of driver version 10.2

220

https://www.oracle.com/database/technologies/faq-jdbc.html
https://learn.microsoft.com/en-us/sql/connect/jdbc/microsoft-jdbc-driver-for-sql-server-support-matrix

@ If you want to use Oracle Spatial or Microsoft SQL Server, you will need to add
- additional modules first. This is described in Adding database modules.

By default, deegree webservices includes a JDBC driver for connecting to

o PostgreSQL. If you want to make a connection to other SQL databases (e.g. Oracle),
you will need to add a compatible JDBC driver manually. This is described in
Adding Oracle support and Adding Microsoft SQL server support.

14.1.1. Minimal configuration example (PostgreSQL)

This example defines a basic connection pool for a PostgreSQL/PostGIS database:

<DataSourceConnectionProvider
xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">
<!-- Creation of javax.sql.DataSource instance -->
<DataSource javaClass="org.apache.commons.dbcp2.BasicDataSource" destroyMethod=
"close" />
<!-- Confiquration of DataSource properties -->
<Property name="driverClassName" value="org.postgresql.Driver" />
<Property name="url" value="jdbc:postgresql://localhost/deegree-db" />
<Property name="username" value="kelvin" />
<Property name="password" value="s3cr3t" />
<Property name="maxTotal" value="10" />
</DataSourceConnectionProvider>

* The DataSource object uses Java class org.apache.commons.dbcp2.BasicDataSource (a
connection pool class provided by Apache Commons DBCP project). If you don’t know what this

means, then this is most likely what you want to use.

* The JDBC driver class is org.postgresql.Driver (this is the Java class name to use when

connecting to PostgreSQL/PostGIS databases).

* The JDBC URL is jdbc:postgresql://localhost:5432/deegree-db. This means that PostgreSQL is
running on the same host, port 5432 (default). The database identifier is deegree-db. Adapt these

values to match to your setup.

* The database username is kelvin, password is s3cr3t. Adapt these parameters to match your

setup.

e The maximum number of simultaneous connections is 10.

o There are additional properties that can be tweaked and which may improve
performance. See Configuration options.

221

https://commons.apache.org/proper/commons-dbcp/index.html

14.1.2. Configuration example (Oracle)

By default, deegree webservices includes JDBC drivers for connecting to
PostgreSQL and Derby databases. In order to connect to Oracle databases, you
need to add a compatible JDBC driver manually. This is described in Adding Oracle
support.

This example defines a connection pool for an Oracle database:

<DataSourceConnectionProvider

xmlns="ht

tp://www.deegree.org/connectionprovider/datasource" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"

Xs1i:schem

alLocation="http://www.deegree.org/connectionprovider/datasource

https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">

<I-- Crea
<DataSour

"close" />

<!-- Conf
<Property
<Property
<Property
<Property
<Property
<Property
<Property

tion of javax.sql.DataSource instance -->
ce javaClass="org.apache.commons.dbcp2.BasicDataSource" destroyMethod=

iguration of DataSource properties -->

name="driverClassName" value="oracle.jdbc.OracleDriver" />
name="url" value="jdbc:oracle:thin:@localhost:1521:deegree" />
name="username" value="kelvin" />

name="password" value="s3cr3t" />
name="poolPreparedStatements" value="true" />

name="maxTotal" value="10" />

name="maxIdle" value="10" />

</DataSourceConnectionProvider>

This defines a database connection with the following properties:

The DataSource object uses the Java class org.apache.commons.dbcp2.BasicDataSource (a
connection pool class provided by Apache Commons DBCP project). If you don’t know what this

means, then this is most likely what you want to use.

The JDBC

driver class is oracle.jdbc.OracleDriver. This is the Java class name to use when

connecting to Oracle databases.

The JDBC URL is jdbc:oracle:thin:@localhost:1521:deegree. This means that Oracle is running on
the local machine, port 1521 (adapt host name and port as required). The database identifier is

deegree.

The database username is kelvin, password is s3cr3t.

The maximum number of simultaneous connections is 10.

14.1.3. Configuration example (Microsoft SQL Server)

222

By default, deegree webservices includes JDBC drivers for connecting to
PostgreSQL and Derby databases. In order to connect to Microsoft SQL Server, you
need to add a compatible JDBC driver manually. This is described in Adding
Microsoft SQL server support.

https://commons.apache.org/proper/commons-dbcp/index.html

This example defines a connection pool for a Microsoft SQL Server:

<DataSourceConnectionProvider

xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">

<!-- Creation of javax.sql.DataSource instance -->

<DataSource javaClass="org.apache.commons.dbcp2.BasicDataSource" destroyMethod=
"close" />

<!-- Confiquration of DataSource properties -->

<Property name="driverClassName" value="
com.microsoft.sqlserver.jdbc.SQLServerDriver" />

<Property name="url" value="jdbc:sqlserver://localhost:1433;databaseName=deegree-db"
/>

<Property name="username" value="kelvin" />

<Property name="password" value="s3cr3t" />

<Property name="maxTotal" value="10" />
</DataSourceConnectionProvider>

This defines a database connection with the following properties:

* The DataSource object uses the Java class org.apache.commons.dbcp2.BasicDataSource (a
connection pool class provided by Apache Commons DBCP project). If you don’t know what this
means, then this is most likely what you want to use.

* The JDBC driver class is com.microsoft.sqlserver.jdbc.SQLServerDriver. This is the Java class
name to use when connecting to Microsoft SQL Server databases.

* The JDBC URL is jdbc:sqlserver://localhost:1433;databaseName=deegree-db. This means that SQL
Server is running on the local machine, port 1433 (adapt host name and port as required). The
database identifier is deegree-db.

* The database username is kelvin, password is s3cr3t.
e The maximum number of simultaneous connections is 10.
14.1.4. Configuration example (JNDI)

This example uses a connection pool that is defined externally by the servlet container that runs
deegree webservices (e.g. Apache Tomcat):

223

https://commons.apache.org/proper/commons-dbcp/index.html

<DataSourceConnectionProvider
xmlns="http://www.deegree.org/connectionprovider/datasource"” xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">
<!-- Lookup of javax.sql.DataSource instance via INDI -->
<DataSource javaClass="org.deegree.db.datasource.JIndilookup" factoryMethod="1ookup">
<Argument value="java:comp/env/jdbc/DatabaseName" javaClass="java.lang.String" />
</DataSource>
</DataSourceConnectionProvider>

* The DataSource object is retrieved using Java method lookup of class
org.deegree.db.datasource.JndiLookup. This is the correct value for retrieving a JNDI-defined
connection pool.

» The JNDI name to look for is java:comp/env/jdbc/DatabaseName. Adapt this value to match your
setup.

14.1.5. Configuration example (Oracle UCP)

By default, deegree webservices includes JDBC drivers for connecting to

o PostgreSQL and Derby databases. In order to connect to Oracle databases, you
need to add a compatible JDBC driver manually. This is described in Adding Oracle
support.

This example uses a connection pool based on Oracle UCP (Universal Connection Pool):

<DataSourceConnectionProvider

xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">

<!-- Creation of javax.sql.DataSource instance -->

<DataSource javaClass="oracle.ucp.jdbc.PoolDataSourceFactory" factoryMethod=
"getPoolDataSource" />

<!-- Configuration of DataSource properties -->

<Property name="connectionFactoryClassName" value="
oracle.jdbc.pool.OracleDataSource" />

<Property name="URL" value="jdbc:oracle:thin:@//localhost:1521/XE" />

<Property name="user" value="kelvin" />

<Property name="password" value="s3cr3t" />

<Property name="initialPoolSize" value="5" />

<Property name="minPoolSize" value="5" />

<Property name="maxPoolSize" value="10" />

<Property name="maxStatements" value="50" />
</DataSourceConnectionProvider>

* The DataSource object is retrieved using Java method getPoolDataSource of class

224

oracle.ucp.jdbc.PoolDataSourceFactory. This is the correct value for creating an Oracle UCP
connection pool.

14.1.6. Configuration options

The database connection config file format is defined by schema file https://schemas.deegree.org/
core/3.6/connectionprovider/datasource/datasource.xsd. The root element is
DataSourceConnectionProvider. The following table lists the available configuration options. When
specifying them, their order must be respected.

Option Cardinality Value Description

DataSource 1.1 Complex Creation/lookup of javax.sql.DataSource object
Property 0.n Complex Configuration of javax.sql.DataSource object
DialectProvider 0..1 Complex Configuration of the dialect provider

Technically, the DataSource element defines how the javax.sql.DataSource object is retrieved. The
retrieved object provides the actual database connections. The DataSource element allows for the
following options:

Option Cardinalit Value Description

y
javaClass 1.1 String Java class to use for instantiation/creation
factoryMethod 0..1 String If present, this static method is used (instead of constructor)
destroyMetho 0..1 String Method to be invoked on the javax.sql.DataSource object to
d close the underlying connection pool. Which method to be

called depends on the implementation of the
javax.sql.DataSource. Check the API documentation for more
information.

Argument 0.1 Comple Argument to use for instantiation/method call
X

Depending on the presence of attribute factoryMethod, either the constructor of the specified
javacClass will be invoked, or the static method of this class will be called. Here are two example
snippets for clarification:

<DataSource javaClass="org.apache.commons.dbcp2.BasicDataSource" />

In this snippet, no factoryMethod attribute is present. Therefore, the constructor of Java class
org.apache.commons.dbcp2.BasicDataSource is invoked. The returned instance must be an
implementation of javax.sql.DataSource, and this is guaranteed, because the class implements this
interface. There are no arguments passed to the constructor.

225

https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd

<!-- Lookup of javax.sql.DataSource instance via INDI -->

<DataSource javaClass="org.deegree.db.datasource.JndilLookup" factoryMethod="1ookup">
<Argument value="java:comp/env/jdbc/DatabaseName" javaClass="java.lang.String" />

</DataSource>

In this snippet, a factoryMethod attribute is present (lookup). Therefore, the static method of Java
class org.deegree.db.datasource./ndiLookup is called. The value returned by this method must be a
javax.sql.DataSource object, which is guaranteed by the implementation. A single String-valued
argument with value java:comp/env/jdbc/DatabaseName is passed to the method.

For completeness, here’s the list of configuration options of element Attribute:

Option Cardinality Value Description
javaClass 1.1 String Java class of the argument (e.g. java.lang.String)
value 1.1 String Argument value

The Property child elements of element DataSourceConnectionProvider are used to configure
properties of the javax.sql. DataSource instance:

<Property name="driverClassName" value="org.postgresql.Driver" />
<Property name="ur1l" value="jdbc:postgresql://localhost/deegree-db" />
<Property name="username" value="kelvin" />

<Property name="password" value="s3cr3t" />

<Property name="poolPreparedStatements" value="true" />

<Property name="maxTotal" value="10" />

<Property name="maxIdle" value="10" />

The properties available for configuration depend on the implementation of javax.sql.DataSource:

* Apache Commons DBCP: See https://commons.apache.org/proper/commons-dbcp/apidocs/org/
apache/commons/dbcp2/BasicDataSource.html

* Oracle UCP: https://docs.oracle.com/cd/E11882_01/java.112/e12826/oracle/ucp/jdbc/
PoolDataSource.html

For completeness, here’s the list of options of element Property:

Option Cardinality Value Description
name 1.1 String Name of the property
value 1.1 String Property value

For cases where deegree cannot automatically determine the dialect provider to use or a special

226

https://commons.apache.org/proper/commons-dbcp/apidocs/org/apache/commons/dbcp2/BasicDataSource.html
https://commons.apache.org/proper/commons-dbcp/apidocs/org/apache/commons/dbcp2/BasicDataSource.html
https://docs.oracle.com/cd/E11882_01/java.112/e12826/oracle/ucp/jdbc/PoolDataSource.html
https://docs.oracle.com/cd/E11882_01/java.112/e12826/oracle/ucp/jdbc/PoolDataSource.html

dialect provider has to be used, a manual configuration can be done with the element
DialectProvider:

Option Cardinality Value Description

javaClass 1..1 String Java class of the dialect
provider (e.g.
org.deegree.sqldialect.postgis.
PostGISDialectProvider)

14.1.7. JDBC connection pools

By default, the Apache Commons DBCP connection pool library is provided with deegree
webservices WAR file. In some cases you may consider another implementation as more
appropriate to use. The following examples show how to use other connection pool provider. Keep
in mind to add the mentioned libraries to the same classpath as the JDBC driver.

14.1.8. PostgreSQL JDBC

The PostgreSQL JDBC driver provides two DataSource implementations which support, among
other things, the configuration for multiple hosts. Read further in the PostgreSQL JDBC driver
documentation. This DataSource implementation requires the official PostgreSQL JDBC driver on
the classpath. Download the driver from: https://jdbc.postgresqgl.org/download/

Configuration example using PGSimpleDataSource

<DataSourceConnectionProvider

xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">

<!-- Creation of javax.sql.DataSource instance -->

<DataSource javaClass="org.postgresql.ds.PGSimpleDataSource"/>

<!-- Confiquration of DataSource properties -->

<Property name="serverName" value="localhost"/>

<Property name="databaseName" value="deegree-db"/>

<Property name="portNumber" value="5432"/>

<Property name="user" value="kelvin"/>

<Property name="password" value="s3cr3t"/>
</DataSourceConnectionProvider>

14.1.9. HikariCP

The HikariCP project states that the implementation is a "zero-overhead" production ready JDBC
connection pool and very lightweight.

This DataSource implementation requires the com.zaxxer:HikariCP library on the classpath.
Download the connection pool from: https://github.com/brettwooldridge/HikariCP

227

https://commons.apache.org/proper/commons-dbcp/
https://jdbc.postgresql.org/documentation/datasource/
https://jdbc.postgresql.org/documentation/datasource/
https://jdbc.postgresql.org/download/
https://github.com/brettwooldridge/HikariCP

Configuration example using HikariDataSource

<DataSourceConnectionProvider
xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
“http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">
<!-- Creation of javax.sql.DataSource instance -->
<DataSource javaClass="com.zaxxer.hikari.HikariDataSource" />
<!-- Configuration of DataSource properties -->
<Property name="jdbcUr1" value="jdbc:postgresql://localhost:5432/deegree-db" />
<Property name="username" value="kelvin" />
<Property name="password" value="s3cr3t" />
</DataSourceConnectionProvider>

c3p0

The c3p0 project states that the implementation is an easy-to-use library for making traditional
JDBC drivers "enterprise-ready” by augmenting them with functionality defined by the JDBC 3 and 4
specs and the optional extensions to JDBC 2.

This DataSource implementation requires the com.mchange:c3p@ library on the classpath. Download
the connection pool from: https://www.mchange.com/projects/c3p0/

Configuration example using ComboPooledDataSource

<DataSourceConnectionProvider
xmlns="http://www.deegree.org/connectionprovider/datasource" xmlns:xsi=
“http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/connectionprovider/datasource
https://schemas.deegree.org/core/3.6/connectionprovider/datasource/datasource.xsd">
<!-- Creation of javax.sql.DataSource instance -->
<DataSource javaClass="com.mchange.v2.c3p@.ComboPooledDataSource” />
<!-- Configuration of DataSource properties -->
<Property name="driverClass" value="org.postgresql.Driver" />
<Property name="jdbcUr1l" value="jdbc:postgresql://localhost:5432/deegree-db" />
<Property name="user" value="kelvin" />
<Property name="password" value="s3cr3t" />
</DataSourceConnectionProvider>

14.1.10. Legacy configuration format

Prior to deegree webservices release 3.4, a simpler (but limited) configuration format was used.
Here’s an example that connects to a PostgreSQL database on localhost, port 5432. The database to
connect to is called 'inspire’, the database user is 'postgres' and password is "postgres'.

228

https://www.mchange.com/projects/c3p0/

<JDBCConnection xmlns="http://www.deegree.org/jdbc" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/jdbc
https://schemas.deegree.org/core/3.6/jdbc/jdbc.xsd">
<Url>jdbc:postgresql://localhost:5432/inspire</Url>
<User>postgres</User>
<Password>postgres</Password>
</JDBCConnection>

The legacy connection config file format is defined by schema file https://schemas.deegree.org/core/
3.6/jdbc/jdbc.xsd. The root element is JDBCConnection. The following table lists the available
configuration options. When specifying them, their order must be respected.

Option Cardinality Value Description

Url 1.1 String JDBC URL (without username / password)
User 1.n String DB username

Password 1.1 String DB password

14.2. Remote OWS connections

Remote OWS connections are typically configured with a capabilities document reference and
optionally some HTTP request parameters (such as timeouts etc.). Contrary to earlier experiments
these resources only define the actual connection to the service, not what is requested. This
resource is all about how to request, not what to request. Other resources (such as a remote WMS
tile store) which make use of such a server connection typically define what to request.

14.2.1. Remote WMS connection

The remote WMS connection can be used to connect to OGC WMS services. Versions 1.1.1 and 1.3.0
(with limitations) are supported.

Let’s have a look at an example:

<RemoteWMS xmlns="http://www.deegree.org/remoteows/wms">
<CapabilitiesDocumentLocation
location="http://deegree3-demo.deegree.org/utah-
workspace/services?request=GetCapabilities&service=WMS&version=1.1.1" />
<ConnectionTimeout>10</ConnectionTimeout>
<RequestTimeout>30</RequestTimeout>
<HTTPBasicAuthentication>
<Username>hans</Username>
<Password>moleman</Password>
</HTTPBasicAuthentication>
</RemoteWMS>

* The capabilities document location is the only mandatory option. You can also use a relative

229

https://schemas.deegree.org/core/3.6/jdbc/jdbc.xsd
https://schemas.deegree.org/core/3.6/jdbc/jdbc.xsd

path to a local copy of the capabilities document to improve startup time.

* The connection timeout defines (in seconds) how long to wait for a connection before throwing
an error. Default is 5 seconds.

* The request timeout defines (in seconds) how long to wait for data before throwing an error.
Default is 60 seconds.

* The http basic authentication options can be used to provide authentication credentials to use
an HTTP basic protected service. Default is not to authenticate.

The WMS version will be detected from the capabilities document version. When using 1.3.0, there
are some limitations (e.g. GetFeatureInfo is not supported), and it is tested to a lesser extent
compared with the 1.1.1 version.

14.2.2. Remote WMTS connection

The remote WMTS connection can be used to connect to a OGC WMTS service. Version 1.0.0 is
supported. The configuration format is almost identical to the remote WMS configuration.

Let’s have a look at an example:

<RemoteWMTS xmlns="http://www.deegree.org/remoteows/wmts">
<CapabilitiesDocumentLocation
location="http://deegree3-testing.deegree.org/utah-
workspace/services?request=GetCapabilities&service=WMTS&version=1.0.0" />
<ConnectionTimeout>10</ConnectionTimeout>
<RequestTimeout>30</RequestTimeout>
<HTTPBasicAuthentication>
<Username>hans</Username>
<Password>moleman</Password>
</HTTPBasicAuthentication>
</RemoteWMTS>

* The capabilities document location is the only mandatory option. You can also use a relative
path to a local copy of the capabilities document to improve startup time.

* The connection timeout defines (in seconds) how long to wait for a connection before throwing
an error. Default is 5 seconds.

* The request timeout defines (in seconds) how long to wait for data before throwing an error.
Default is 60 seconds.

* The http basic authentication options can be used to provide authentication credentials to use
an HTTP basic protected service. Default is not to authenticate.

GetTile and GetFeatureInfo operations are supported for remote WMTS resources.

230

Chapter 15. Process providers

Process provider resources define geospatial processes that can be accessed via the Web Processing
Service (WPS).

The remainder of this chapter describes some relevant terms and the process provider
configuration files in detail. You can access this configuration level by clicking on the processes
link in the administration console. The corresponding resource files are located in the processes/
subdirectory of the active deegree workspace directory.

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections

(JDBC, RemoteOWS) Processes

Figure 55. Process providers plug geospatial processes into the WPS

15.1. Java process provider

The Java process provider is a well-defined container for processes written in the Java
programming language. In order to set up a working Java process provider resource, two things are
required:

» AJava process provider configuration file

* A Processlet: Java class with the actual process code
The first item is an XML resource configuration file like any other deegree resource configuration.
The second is special to this kind of resource. It provides the byte code with the process logic and
has to be accessible by deegree’s classloader. There are several options to make custom Java code
available to deegree webservices (see Java code and the classpath for details), but the most common
options are:

 Putting class files into the classes/ directory of the workspace

* Putting JAR files into the modules/ directory of the workspace

231

15.1.1. Minimal configuration example
A very minimal valid configuration example looks like this:

Java process provider: Minimal example (resource configuration)

<ProcessDefinition processVersion="1.0.0" xmlns="
http://www.deegree.org/processes/java"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=
"http://www.deegree.org/processes/java
https://schemas.deegree.org/core/3.6/processes/java/java.xsd">
<Identifier>Process42</Identifier>
<JavaClass>Processlet42</JavaClass>
<Title>Calculates the answer to life, the universe and everything</Title>
<QutputParameters>
<LiteralOutput>
<Identifier>Answer</Identifier>
<Title>The universal answer</Title>
</LiteralOutput>
</OutputParameters>
</ProcessDefinition>

This example defines a bogus process with the following properties:

Identifier: Process42

Bound to Java code from class Processlet42

Title Calculates the answer to life, the universe and everything (returned in WPS responses)

 No input parameters

Single output parameter with identifier Answer and title The universal answer
In order to make this configuration work, a matching Processlet class is required:

Java process provider: Minimal example (Java code)

232

import org.deegree.
import org.deegree.
import org.deegree.
import org.deegree.
import org.deegree.
import org.deegree.

services
services
services
services
services
services

.wps.Processlet;
.wps.ProcessletException;
.wps.ProcessletExecutionInfo;
.wps.ProcessletInputs;
.wps.ProcessletOutputs;
.wps.output.LiteralOutput;

public class Processlet4? implements Processlet {

public void process(ProcessletInputs in, ProcessletOutputs out,
ProcessletExecutionInfo info)

throws ProcessletException {

LiteralOutput output = (LiteralOutput) out.getParameter("Answer");
output.setValue("42");

public void init() {
// nothing to initialize

}

public void destroy() {
// nothing to destroy

}

15.1.2. More complex configuration example

A more complex configuration example looks like this:

Java process provider: More complex example (resource configuration)

233

<ProcessDefinition processVersion="1.0.0" storeSupported="true" statusSupported="
false"
xmlns="http://www.deegree.org/processes/java" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/processes/java
https://schemas.deegree.org/core/3.6/processes/java/java.xsd">
<Identifier>Addition</Identifier>
<JavaClass>AdditionProcesslet</JavaClass>
<Title>Process for adding two integer values.</Title>
<Abstract>The purpose of this process is to provide new users with a simple example
process.</Abstract>
<InputParameters>
<LiteralInput>
<Identifier>SummandA</Identifier>
<Title>First summand </Title>
<Abstract>This parameter specifies the first summand for a simple
addition.</Abstract>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">
integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<0therUOM>centimeters</0therU0M>
</Literallnput>
<LiteralInput>
<Identifier>SummandB</Identifier>
<Title>Second summand </Title>
<Abstract>This parameter specifies the second summand for a simple
addition.</Abstract>
<DataType reference="http://www.w3.0rg/TR/xmlschema-2/#integer">
integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<0therUOM>centimeters</0therUOM>
</Literallnput>
</InputParameters>
<QutputParameters>
<LiteralOutput>
<Identifier>Sum</Identifier>
<Title>The result of the addition operation</Title>
<DataType reference="http://www.w3.org/TR/xmlschema-2/#integer">
integer</DataType>
<DefaultUOM>meters</DefaultUOM>
<0therUOM>centimeters</0therUOM>
</LiteralOutput>
</OutputParameters>
</ProcessDefinition>

This example defines a demonstration process with the following properties:

 Identifier: AdditionProcess

* Bound to Java code from class AdditionProcesslet

234

* Title Process for adding two integer values. (returned in WPS responses)

* Two integer input parameters SummandA and SummandB with title, abstract and unit of
measure

* Single integer output parameter with identifier Sum, title and unit of measure

In order to make this configuration work, a matching Processlet class is required:

Java process provider: Minimal example (Java code)

import
import
import
import
import
import
import

public

org
org
org
org
org
org
org

.deegree.
.deegree.
.deegree.
.deegree.
.deegree.
.deegree.
.deegree.

services
services
services
services
services
services

.wps.Processlet;
.wps.ProcessletException;
.wps.ProcessletExecutionInfo;
.wps.ProcessletInputs;
.wps.ProcessletOutputs;
.wps.input.Literallnput;
services.

wps.output.LiteralOutput;

class AdditionProcesslet implements Processlet {

public void process(ProcessletInputs in, ProcessletOutputs out,
ProcessletExecutionInfo info)

int summandA

)).getValue());

int summandB

)).getValue());
int sum = summandA + summandB;

}

public void destroy() {}

throws ProcessletException {

Integer.parselnt(((Literallnput) in.getParameter("SummandA"

Integer.parseInt(((Literallnput) in.getParameter("SummandB"

LiteralOutput output = (LiteralOutput) out.getParameter("Sum");

output.setValue(

public void init() {}

+ sum);

15.1.3. Configuration options

The configuration format for the Java process provider is defined by schema file
https://schemas.deegree.org/core/3.6/processes/java/java.xsd. The following table lists all available
configuration options. When specifying them, their order must be respected.

Option

Cardinal Value Description

ity

@processVersio 1

n

String Release version of this process (metadata)

235

https://schemas.deegree.org/core/3.6/processes/java/java.xsd

Option Cardinal Value Description

ity

@storeSupport 0..1 Boolea If set to true, asynchronous execution will become available

ed n

@statusSupport 0..1 Boolea If set to true, process code provides status information

ed n

Identifier 1 String Identifier of the process

JavaClass 1 String Fully qualified name of a Processlet that implements the
process logic

Title 1 String Short and meaningful title (metadata)

Abstract 0..1 String Short, human readable description (metadata)

Metadata 0.n String Additional metadata

Profile 0.n String Profile to which the WPS process complies (metadata)

WSDL 0.1 String URL of a WSDL document which describes this process
(metadata)

InputParamete 0..1 Compl Definition and metadata of the input parameters

rs ex

OutputParamet 1 Compl Definition and metadata of the output parameters

ers ex

The following sections describe these options and their sub-options in detail, as well as the
Processlet APL.

15.1.4. General options

All general options just provide metadata that the WPS reports to client. They don’t affect the
behaviour of the configured process.

» processVersion: The processVersion attribute has to be managed by the process developer and
describes the version of the process implementation. This parameter is usually increased when
changes to the implementation of a process apply.

* Identifier: An unambiguous identifier

Title: Short and meaningful title

Abstract: Short, human readable description
e Metadata: Additional metadata

* Profile: Profile to which the WPS process complies

WSDL: URL of a WSDL document which describes this process

0 These options directly relate to metadata defined in the WPS 1.0.0 specification.

236

https://www.ogc.org/standard/wps/

15.1.5. The Processlet API

Option JavaClass specifies the fully qualified name of a Java class that implement deegree’s
Processlet Java interface. This interface is part of an API that hides the complexity of the WPS
protocol while providing efficient and scalable handling of input and output parameters. By using
this API, the process developer can focus on implementing the process logic without having to care
of the details of the protocol:

Request encoding (KVP, XML, SOAP)

Input parameter passing variants (inline, by reference)
Output parameter representation (inline, by reference)
Storing of response documents

Synchronous/asynchronous execution

The interface looks like this:

Java process provider: Processlet interface

package org.deegree.services.wps;

public interface Processlet {

* Called by the {@link ProcessManager} to perform an execution of this {@link

Processlet}.

<p>

The typical workflow is:

Get inputs from <code>in</code> parameter</1i>

Parse inputs into the required format (e.g. GML)</1i>

<1i>Do computation.</1i>

Transform computational results into required format (e.g. GML)</1i>
Write results to <code>out</code> parameter</1i>

@param 1in

input arguments to be processed, never <code>null</code>
@param out

used to store the process outputs, never <code>null</code>
@param info

can be used to provide execution information, i.e. percentage

completed and start/success messages

that it wants to make known to clients, never <code>null</code>

* @throws ProcessletException

may be thrown by the processlet to indicate a processing exception

public void process(ProcessletInputs in, ProcessletOutputs out,

ProcessletExecutionInfo info)

throws ProcessletException;

237

/**

* Called by the {@link ProcessManager} to indicate to a {@link Processlet} that
it is being placed into service.

*/

public void init();

/**

* Called by the {@link ProcessManager} to indicate to a {@link Processlet} that
it is being taken out of service.

* <p>

* This method gives the {@link Processlet} an opportunity to clean up any
resources that are being held (for

* example, memory, file handles, threads) and make sure that any persistent state
is synchronized with the

* {@link Processlet}'s current state in memory.

* </p>

*/

public void destroy();

As you can see, the interface defines three methods:

* init(): Called once when the workspace initializes the Java process provider resource that
references the class.

* destroy(): Called once when the workspace destroys the Java process provider resource that
references the class.

» process(...): Called every time an Execute request is sent to the WPS that targets this Processlet.
The method usually reads the input parameters, performs the actual computation and writes
the output parameters.

The Processlet interface mimics the well-known Java Servlet interface (hence the
o name). A Servlet developer does not need to care of the details of HTTP. Similarly, a
Processlet developer does not need to care of the details of the WPS protocol.

The Java process provider instantiates the Processlet class only once. However,

o multiple simultaneous executions of a Processlet are possible (in case parallel
Execute-requests are sent to a WPS), and therefore, the Processlet code must be
implemented in a thread-safe manner (just like Servlets).

Processlet compilation

In order to succesfully compile a Processlet implementation, you will need to make the Processlet
API available to the compiler. Generally, this means that the Java module deegree-services-wps (and
it’s dependencies) have to be on the build path. We suggest to use Apache Maven for this. Here’s an
example POM for your convenience:

Java process provider: Example Maven POM for compiling processlets

238

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<artifactId>processlet-examples</artifactId>

<packaging>jar</packaging>

<name>processlet-examples</name>

<description>Maven project for compiling Processlets</description>

<parent>
<groupld>org.deegree</groupld>
<artifactId>deegree</artifactId>
<version>3.6.1</version>
</parent>

<repositories>
<repository>
<id>deegree-repo</id>
<url>https://repo.deegree.org/content/groups/public</url>
<releases>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>

<dependencies>
<dependency>
<groupIld>org.deegree</groupld>
<artifactId>deegree-services-wps</artifactId>
<version>3.6.1</version>
</dependency>
</dependencies>

</project>

You can use this POM to compile the example Processlets above. Just create an
empty directory somewhere and save the example POM as pom.xml. Place the
Processlet Java files into subdirectory sr¢/main/java/ (as files Processlet42.java |

@ AdditionProcesslet.java). On the command line, change to the project directory and
use mvn package (Apache Maven 3.0 and a compatible Java JDK have to be
installed). Subdirectory target should now contain a JAR file that you can copy into
the modules/ directory of the deegree workspace.

239

Testing Processlets using raw WPS requests

In order to perform WPS request to access your process provider/Processlet, you

o need to have an active Web Processing Service (WPS) resource in your workspace
(which handles the WPS protocol and forwards the request to the process provider
and the processlet).

The general idea of the WPS specification is that a client connects to a WPS server and invokes
processes offered by the server to perform a computation. However, in some cases, you may just
want to send raw WPS requests to a server and check the response yourself (e.g. for testing the
behaviour of your processlet). The WPS 1.0.0 specification defines KVP, XML and SOAP-encoded
requests. All encodings are supported by the deegree WPS, so you can choose the most appropriate
one for your use-case. For sending KVP-requests, you can simply use your web browser (or a
command line tools like wget or curl). XML or SOAP requests can be sent using deegree’s generic
client.

Some KVP GetCapabilities/DescribeProcess request examples for checking the metadata of
processes:
* http://127.0.0.1:8080/services/wps?service=WPS&request=GetCapabilities

* http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&
identifier=Process42

* http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&
identifier=AdditionProcess
Some simple KVP Execute request examples for invoking processes:
* http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&
identifier=Process42

* http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&
identifier=Addition&datainputs=SummandA=21;SummandB=21

The WPS 1.0.0 specification (and the deegree WPS) support many features with

regard to process invocation, such as input parameter passing (inline or by
@ reference), return parameters (inline or by reference), response variants and
v asynchronous execution. Example workspace 3: Web Processing Service demo

contains XML example requests which demonstrate most of these features.

15.1.6. Input and output parameters

Besides the process logic, the most crucial topic of WPS process implementation is the standard-
compliant definition and handling of input and output parameters. The deegree WPS and the Java
process provider support all parameter types that are defined by the WPS 1.0.0 specification:

* Literallnput/LiteralOutput: Literal values, e.g. "red", "42" or "highway 66"

* BoundingBoxInput/BoundingBoxOutput: A geo-referenced bounding box

» ComplexInput/ComplexOutput: Either an XML structure (e.g. GML encoded features) or binary

240

https://www.ogc.org/standard/wps/
http://127.0.0.1:8080/services/wps?service=WPS&request=GetCapabilities
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=Process42
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=Process42
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=AdditionProcess
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=AdditionProcess
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Process42
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Process42
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Addition&datainputs=SummandA=21;SummandB=21
http://127.0.0.1:8080/services/wps?service=WPS&version=1.0.0&request=Execute&identifier=Addition&datainputs=SummandA=21;SummandB=21
https://www.ogc.org/standard/wps/
https://www.ogc.org/standard/wps/

data (e.g. coverage data as GeoTIFF)

In order to create your own process, first find out which input and output parameters you want it
to have. During implementation, each parameter has to be considered twice:

* It has to be defined in the resource configuration file

* It has to be read or written in the Processlet
The definition in the resource configuration is mostly to specify metadata (identifier, title, abstract,
datatype) of the parameter. The WPS will report it in response to DescribeProcess requests. When
performing Execute requests, the deegree WPS will also perform a basic check of the validity of the

input parameters (identifier, number of occurrences, type) and respond with an ExceptionReport if
the constraints are not met.

Basics of defining input and output parameters

In order to define a parameter of a process, create a new child element in your process provider
configuration:

e Input: Add a Literallnput, BoundingBoxInput or ComplexInput element to section
InputParameters

* Output: Add a LiteralOutput, BoundingBoxOutput or ComplexOutput element to section
OutputParameters

Here’s an InputParameters example that defines four parameters:

Java process provider: Example for InputParameters section

241

<InputParameters>
<Literallnput>
<Identifier>Literallnput</Identifier>
<Title>Example literal input </Title>
<Abstract>This parameter specifies how long the execution of the process takes
(the process sleeps for this time).

May be specified in seconds or minutes.</Abstract>
<DataType reference="http://www.w3.0org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>seconds</DefaultUOM>
<0therUOM>minutes</0therUOM>

</Literallnput>

<BoundingBoxInput>
<Identifier>BBOXInput</Identifier>
<Title>BBOXInput</Title>
<DefaultCRS>EPSG:4326</DefaultCRS>

</BoundingBoxInput>

<ComplexInput>
<Identifier>XMLInput</Identifier>
<Title>XMLInput</Title>
<DefaultFormat mimeType="text/xml" />

</ComplexInput>

<ComplexInput>
<Identifier>BinaryInput</Identifier>
<Title>BinaryInput</Title>
<DefaultFormat mimeType="1image/png" encoding="base64" />

</ComplexInput>

</InputParameters>

Here’s an OutputParameters example that defines four parameters:

Java process provider: Example for OutputParameters section

242

<QutputParameters>

<LiteralOutput>
<Identifier>LiteralOutput</Identifier>
<Title>A literal output parameter</Title>
<DataType reference="http://www.w3.0org/TR/xmlschema-2/#integer">integer</DataType>
<DefaultUOM>seconds</DefaultUOM>

</LiteralOutput>

<BoundingBoxOutput>
<Identifier>BBOXOutput</Identifier>
<Title>A bounding box output parameter</Title>
<DefaultCRS>EPSG:4326</DefaultCRS>

</BoundingBoxOutput>

<ComplexOutput>
<Identifier>XMLOutput</Identifier>
<Title>An XML output parameter</Title>
<DefaultFormat mimeType="text/xml" />

</ComplexOutput>

<ComplexOutput>
<Identifier>BinaryQutput</Identifier>
<Title>A binary output parameter</Title>
<DefaultFormat mimeType="1image/png" encoding="base64" />

</ComplexOutput>

</OutputParameters>

Each parameter definition element has the following common options:

Option Cardinal Value Description

ity
Identifier 1 String Identifier of the parameter
Title 1 String Short and meaningful title (metadata)
Abstract 0..1 String Short, human readable description (metadata)
Metadata 0.n String Additional metadata

Besides the identifier of the parameter, these parameters just define metadata that the WPS reports.
Additionally, each input parameter definition element supports the following two attributes:

Option Cardinal Value Description
ity
@minOccurs 0.n Intege Minimum number of times the input has to be present in a
r request, default: 1
@maxOccurs 0.n String Maximum number of times the input has to be presentin a

request, default: 1

The differences and special options of the individual parameter types (Literal, Bounding Box,
Complex) are described in the following sections.

243

Basics of accessing input and output parameters

The first two arguments of Processlet#process(..) provide access to the input parameter values and
output parameter sinks. The first argument is of type ProcessletInputs and encapsulates the process
input parameters. Here’s an example snippet that shows how to access the input parameter with
identifier Literallnput:

public void process(ProcessletInputs in, ProcessletOutputs out,
ProcessletExecutionInfo info)
throws ProcessletException {

ProcessletInput literallnput = in.getParameter("LiteralInput");
[...]

The getParameter(...) method of ProcessletInputs takes the identifier of the process parameter as an
argument and returns a ProcessletInput (without the s) object that provides access to the actual
value of the process parameter. Here’s the ProcessletInput interface:

public interface ProcessletInput {

/**
* Returns the identifier or name of the input parameter as defined in the process

description.
*

* @return the identifier of the input parameter
*/
public CodeType getIdentifier();

/**
* Returns the title that has been supplied with the input parameter, normally

available for display to a human.
*

* @return the title provided with the input, may be null
*/
public LanquageString getTitle();

/**

* Returns the narrative description that has been supplied with the input
parameter, normally available for display

* to a human.
*

* @return the abstract provided with the input, may be null
*/
public LanguageString getAbstract();

This interface does not provide access to the passed value, but ProcessletInput is the parent of three

244

Java types that directly correspond to three input parameter types of the process provider
configuration:

class inpat

winterfaces
FProcesslieflmguf

+

gettlertifien) ; Code Fype
get tle) : Language Sting
getdbstact]) - Larguage StRrg

+ +

winterfaces
winterfaces winterigcen Conmalexlrouf
BoundingBoxinEig Liferallnguf getlfae Noe () ;- Shirg

getlowen] dowhlef]
getlppen) dowhlel]
getGREName] o Shing
getlfzluwe) : Erveloge

getEroodimg () Shimg

getSohema() | Sting

getlalveAzSinany Stean) © put Sheaw
getlValve AsX Steaa () AL SteamReader

+ getlfaluve Sting
+ getlON] o SR
+ getlata Npoe(] @ Shieg

+ o+ + o+
+ o+ + o+ +

Figure 56. ProcessletInput interface and sub types for each parameter type

For example, if your input parameter definition "A" is a BoundingBoxInput, then the Java type for
this parameter will be BoundingBoxInput as well. In your Java code, use a type cast to narrow the
return type (and gain access to the passed value):

public void process(ProcessletInputs in, ProcessletOutputs out,
ProcessletExecutionInfo info)

throws ProcessletException {

BoundingBoxInput inputA = (BoundingBoxInput) in.getParameter("A");
[...]

If an input parameter can occur multiple times (maxOccurs > 1 in the definition),
use method getParameters(...) instead of getParameter(...). The latter method
returns a List of ProcessletInput objects.

Output parameters are treated in a similar manner. The second parameter of Processlet#process(..)
provides to output parameter sinks. It is of type ProcessletOutputs. Here’s a basic usage example:

public void process(ProcessletInputs in, ProcessletOutputs out,
ProcessletExecutionInfo info)

throws ProcessletException {

ProcessletOutput literalOutput = out.getParameter("LiteralOutput");
[...]

245

Here’s the ProcessletOutput interface:

public interface ProcessletOutput {

/**

* Returns the identifier or name of the output parameter as defined in the
process description.

*

* @return the identifier of the output parameter

*/

public CodeType getIdentifier();

/**

* Returns the title that has been supplied with the request of the output
parameter, normally available for display

* to a human.

*

* @return the title provided with the output, may be null

*/

public LanguageString getSubmittedTitle();

/**

* Returns the narrative description that has been supplied with the request of
the output parameter, normally

* available for display to a human.

*

* @return the abstract provided with the output, may be null

*/

public LanguageString getSubmittedAbstract();

/**

* Returns whether this output parameter has been requested by the client, i.e. if
it will be present in the result.

* <p>

* NOTE: If the parameter is requested, the {@link Processlet} must set a value
for this parameter, if not, it may

* or may not do so. However, for complex output parameters that are not
requested, it is advised to omit them for

* more efficient execution of the {@link Processlet}.

* </p>

*

* @return true, if the {@link Processlet} must set the value of this parameter
(in this execution), false otherwise

*/

public boolean isRequested();

/'k*

* Sets the parameter title in the response sent to the client.
*

* @param title

246

public void setTitle(LanguageString title);

public void setAbstract(LanguageString summary);

Again, there are three subtypes. Each subtype of ProcessletOutput corresponds to one output
parameter type:

class outpt

cinterfaces
FProcesslefluiouf

getdentifien) ; Code Twoe

ged Swbaitted Nithe () & Languaoe Stimg
ged Swbaitted Abstact) | Language Shimg
izReguested () - hoolean
setfitlellamguage Sting) - void

/7 setdbsfactlanguage Shing) o woid

. winterfaces)
winterfaces winterfaces

BoundingBoxCutaut Ermale xEkiipa] LiferatOuigut
getBirany Outout Strean () - Cutowt Steaw
eI She g6 Widden] XL Ste s Wisher
getReguestedWae Tipe () 0 Shimg
getReguested Sehema) | Shimg

+ o+ o+ o+ 4+

+ metlaluedouhle, dowhle, dowhle, dowhle, Shicg) @ woid
+ metlalvedouhlel] dowhlef], Shing) o woid
+ zetlalue Eqveloge] [noid

+ zeilalve(Shicg) o void
+ getReguested LION) - Shiag
+ getlatz Myoe () © Stirg

+ o+ + o+

Figure 57. ProcessletOutput interface and sub types for each parameter type

Literal parameters

Literal input and output parameter definitions have the following additional options:

Option Cardinal Value Description
ity
DataType 0..1 String Data Type of this input (or output), default: unspecified
(string)
DefaultUOM 0.1 String Default unit of measure, default: unspecified
OtherUOM 0.n String Alternative unit of measure
DefaultValue 0..1 String Default value of this input (only for inputs)
AllowedValues 0..1 Compl Constraints based on value sets and ranges (only for inputs)
ex
ValidValueRefer 0..1 Compl References to externally defined value sets and ranges (only
ence ex for inputs)

247

These options basically define metadata that the WPS publishes to clients. For the sub-options of the
AllowedValues and ValidValueReference options, please refer to the WPS 1.0.0 specification or the
XML schema for the Java process provider configuration format (https://schemas.deegree.org/core/
3.6/processes/java/java.xsd).

In order to work with a Literallnput parameter in the Processlet code, the corresponding Java type
offers the following methods:

/**

* Returns the literal value.

*

* @see #getUOM()

* @return the literal value (has to be in the correct UOM)
*/

public String getValue();

/**

* Returns the UOM (unit-of-measure) for the literal value, it is guaranteed that the
returned UOM is supported for

* this parameter (according to the process description).

*

* @return the requested UOM (unit-of-measure) for the literal value, may be null if
no UOM is specified in the

* process description

*/

public String getUOM();

/**

* Returns the (human-readable) literal data type from the process definition, e.g.
<code>integer</code>,

* <code>real</code>, etc).
*

* @return the data type, or null if not specified in the process definition
*/
public String getDataType();

Similarly, the LiteralOutput type offers the following methods:

248

https://www.ogc.org/standard/wps/
https://schemas.deegree.org/core/3.6/processes/java/java.xsd
https://schemas.deegree.org/core/3.6/processes/java/java.xsd

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

* @see #getRequestedUOM()

* @param value

% value to be set (in the requested UOM)
*/

public void setValue(String value);

/**

* Returns the requested UOM (unit-of-measure) for the literal value, it is guaranteed
that this UOM is supported

* for this parameter (according to the process description).

*

* @return the requested UOM (unit-of-measure) for the literal value, may be null

*/

public String getRequestedUOM();

/**

* Returns the announced literal data type from the process definition (e.g. integer,
real, etc) as an URI, such as
* <code>http://www.w3.0rg/TR/xmlschema-2/#integer</code>.

*

* @return the data type, or null if not specified in the process definition
*/
public String getDataType();

BoundingBox parameters

BoundingBox input and output parameter definitions have the following additional options:

Option Cardinal Value Description

ity
DefaultCRS 1 String Identifier of the default coordinate reference system
OtherCRS 0.n String Additionally supported coordinate reference system

In order to work with a BoundingBoxInput parameter in the Processlet code, the corresponding Java
type offers the following methods:

249

/**

* Returns the lower corner point of the bounding box.
*

* @return the lower corner point

*/

public double[] getLower();

/**

* Returns the upper corner point of the bounding box.
*

* @return the upper corner point

*/

public double[] getUpper();

/**

* Returns the CRS (coordinate reference system) name of the bounding box.

*

* @return the CRS (coordinate reference system) name or null if unspecified
*/

public String getCRSName();

/**

* Returns the bounding box value, it is quaranteed that the CRS (coordinate reference
system) of the returned

* {@link Envelope} is supported for this parameter (according to the process
description).

*

* @return the value

*/

public Envelope getValue();

Similarly, the BoundingBoxOutput type offers the following methods:

250

* Sets the value for this output parameter of the {@link Processlet} execution.

* @param lowerX

* @param LlowerY

* @param upperX

* @param upperY

* @param crsName

*/

public void setValue(double lowerX, double lowerY, double upperX, double upperY,
String crsName);

/**
* Sets the value for this output parameter of the {@link Processlet} execution.

* @param lower

* @param upper

* @param crsName

*/

public void setValue(double[] lower, double[] upper, String crsName);

/**

* Sets the value for this output parameter of the {@link Processlet} execution.
*

* @param value

* value to be set

*/

public void setValue(Envelope value);

Complex parameters

Complex input and output parameter definitions have the following additional options:

Option Cardinal Value Description
ity
@maximumMeg 0..n Intege Maximum file size, in megabytes (only for inputs)
abytes r
DefaultFormat 1 Compl Definition of the default XML or binary format
ex
OtherFormats 0.n Compl Definition of an alternative XML or binary format
ex

A complex format (DefaultFormat/OtherFormat) is defined via three attributes (compare with the
WPS 1.0.0 specification):

251

https://www.ogc.org/standard/wps/

Option Cardinal Value Description

ity
@mimeType 0.1 String Mime type of the content, default: unspecified
@encoding 0..1 String Encoding of the content, default: unspecified
@schema 0.1 String XML schema of the content, default: unspecified

In order to work with a ComplexInput parameter in the Processlet code, the corresponding Java
type offers the following methods:

/**

* Returns the mime type of the input.

*

* @return the mime type of the input, may be <code>null</code>
*/

public String getMimeType();

/**

* Returns the encoding information supplied with the input.

*

* @return the encoding information supplied with the input, may be <code>null</code>
*/

public String getEncoding();

/**

* Returns the schema URL supplied with the input.

*

* @return the schema URL supplied with the input, may be <code>null</code>
*/

public String getSchema();

/**

* Returns an {@link InputStream} for accessing the complex value as a raw stream of
bytes (usually for binary

* input).

* <p>

* NOTE: Never use this method if the input parameter is encoded in XML -- use {@link
#igetValueAsXMLStream()}

* instead. Otherwise erroneous behaviour has to be expected (if the input value is
given embedded in the execute

* request document).

* </p>

*

@see #getValueAsXMLStream()

@return the input value as a raw stream of bytes

@throws IOException

* if accessing the value fails

*/

public InputStream getValueAsBinaryStream()

*
*

*

252

throws IOException;

/**
* Returns an {@link XMLStreamReader} for accessing the complex value as an XML event
stream.
* <p>
* NOTE: Never use this method if the input parameter is a binary value -- use {@link
#igetValueAsBinaryStream()}
* instead.
* </p>
* The returned stream will point at the first START_ELEMENT event of the data.
*
* @return the input value as an XML event stream, current event is START_ELEMENT (the
root element of the data
o object)
* @throws IOException
* if accessing the value fails
* @throws XMLStreamException
*/
public XMLStreamReader getValueAsXMLStream()
throws IOException, XMLStreamException;

Similarly, the ComplexOutput type offers the following methods:

253

/**

* Returns a stream for writing binary output.

*

* @return stream for writing binary output, never <code>null</code>
*/

public OutputStream getBinaryOutputStream();

/**
* Returns a stream for for writing XML output. The stream is already initialized with

a
{@link XMLStreamWriter#iwriteStartDocument()}.

*
*
* @return a stream for writing XML output, never <code>null</code>
* @throws XMLStreamException
*/
public XMLStreamWriter getXMLStreamWriter()

throws XMLStreamException;

/**

* Returns the requested mime type for the complex value, it is guaranteed that the
mime type is supported for this

* parameter (according to the process description).

*

* @return the requested mime type, never <code>null</code> (as each complex output
format has a default mime type)

*/

public String getRequestedMimeType();

/**

* Returns the requested XML format for the complex value (specified by a schema URL),
it is quaranteed that the

* format is supported for this parameter (according to the process description).

*

* @return the requested schema (XML format), may be <code>null</code> (as a complex
output format may omit schema

& information)

*/

public String getRequestedSchema();

/**

* Returns the requested encoding for the complex value, it is guaranteed that the
encoding is supported for this

* parameter (according to the process description).

*

* @return the requested encoding, may be <code>null</code> (as a complex output
format may omit encoding

o information)

*/

public String getRequestedEncoding();

254

15.1.7. Asynchronous execution and status information

The WPS protocol offers support for asynchronous execution of processes as well as providing
status information for long running processes. The following two options of the Java process
provider deal with this:

» @storeSupported: If the storeSupported attribute is set to true, asynchronous execution of the
process will be possible. A WPS client can then choose between synchronous execution (default)
and asynchronous execution. Note that this doesn’t add any requirements to the
implementation of the Processlet code, this is taken care of automatically by the deegree WPS.

» @statusSupported: If statusSupported is set to true, the WPS will announce that the process can
provide status information, i.e. execution percentage. In order for this to work, the Processlet
code has to provide status information.

Providing status information in the Processlet code

The third parameter that’s passed to the execute(...) method is of type ProcessletExecutionInfo. This
type provides the following methods:

/**

* Allows the {@link Processlet} to indicate the percentage of the process that has
been completed, where @ means

* the process has just started, and 99 means the process is almost complete. This
value is expected to be accurate

* to within ten percent.
*

* @param percentCompleted

* the percentage value to be set, a number between @ and 99
*/

public void setPercentCompleted(int percentCompleted);

/**

* Allows the {@link Processlet} to provide a custom started message for the client.
*

* @param message
*/
public void setStartedMessage(String message);

/**

* Allows the {@link Processlet} to provide a custom finished message for the client.
*

* @param message
*/
public void setSucceededMessage(String message);

(r) Depending on the type of computation that a Processlet performs, it may or may
- not be trivial to provide correct progress information via setPercentCompleted(...).

255

15.2. FME process provider

The FME process provider connects to an instance of FME server and offers the configured
workspaces as WPS processes. Only FME Server with enabled REST API Version 3 are supported.

15.2.1. Minimal configuration example
A very minimal valid configuration example looks like this:

FME process provider: Minimal example (resource configuration)

<FMEServer xmlns="http://www.deegree.org/processes/fme" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/processes/fme
https://schemas.deegree.org/core/3.6/processes/fme/fme.xsd">
<Address>http://fmeserver.example.com/</Address>
<Username>guest</Username>
<Password>guest</Password>

<!--
<Repository>wps</Repository>
-->
</FMEServer>
Option Cardinal Value Description
ity
Address 1 String Base address of the FME server
Username 1 String Username, required
Password 1 String Password, required
Repository 0.n String Repository to search for processes. If not specified, wps will be

used

256

Chapter 16. Coordinate reference systems

Coordinate reference system identifiers are used in many places in deegree webservices:

* In incoming service requests (e.g. GetFeature-requests to the WFS)

* In a lot of resource configuration files (e.g. in Feature stores)
deegree has an internal CRS database that contains many commonly used coordinate reference
systems. Some examples for valid CRS identifiers:

» EPSG:4258

* http://www.opengis.net/gml/srs/epsg.xml#4258

» urn:ogc:def:crs:epsg::4258

* urn:opengis:def:crs:epsg::4258

As a rule of thumb, deegree’s CRS database uses the EPSG:12345 identifier variant
to indicate XY axis order, while the URN variants (such as
(r) urn:ogc:def:crs:epsg::12345) always use the official axis order defined by the EPSG.
- For example EPSG:4258 and urn:ogc:def:crs:epsg::4258 both refer to ETRS89, but
EPSG:4258 means ETRS89 in XY-order, while urn:ogc:def:crs:epsg::4258 is YX (the
official order defined by the EPSG for this CRS).

The CRS subsystem is not fully integrated with the deegree workspace yet. Rework

o and proper documentation are on the roadmap for one of the next releases. If you
have trouble finding a specific CRS, please contact the deegree mailing lists for
support.

257

http://www.opengis.net/gml/srs/epsg.xml#4258
https://www.deegree.org/community/
https://www.deegree.org/community/

Chapter 17. deegree REST interface

deegree offers a REST like web interface to access and configure the deegree workspace. You can
use it to alter configuration, restart workspaces or resources and start a different workspace.

17.1. Setting up the interface

The servlet that handles the REST interface is already running if you use the standard web.xml
deployment descriptor. For security reasons the REST API is secured by default with an API key
read from the config.apikey file in deegree workspace directory.

The API key can be provided in multiple different ways.

* As header value of key X-API-Key

» As authorization header of bearer type

* As basic authorization password where username will be ignored
e As parameter token

* As parameter api_key

If there is no config.apikey file, one will be generated on startup with an random
O value. Alternatively, a value of * in config.apikey will turn off security for the REST
API. We strongly advise against doing this in productive environments.

Once you did that, you can get an overview of available 'commands' by requesting
http://localhost:8080/deegree-webservices/config. Yow’ll need to provide the username/password
credentials you configured for every request within the HTTP header (HTTP BASIC authentication).

Here’s an example output:

No action specified.

Available actions:

GET /config/download[/path] - download currently
running workspace or file in workspace

GET /config/download/wsname[/path] - download workspace with
name <wsname> or file in workspace

GET /config/restart - restart currently
running workspace

GET /config/restart[/path] - restarts all resources
connected to the specified one

GET /config/restart/wsname - restart with workspace
<wsname>

GET /config/update - update currently
running workspace, rescan config files and update resources

GET /config/update/wsname - update with workspace
<wsname>, rescan config files and update resources

GET /config/listworkspaces - list available

258

http://localhost:8080/deegree-webservices/config

workspace names

GET /config/listfonts - list currently
available fonts on the server

GET /config/list[/path] - list currently running
workspace or directory in workspace

GET /config/list/wsname[/path] - list workspace with

name <wsname> or directory in workspace
GET /config/invalidate/datasources/tile/id/matrixset[?bbox=] - invalidate part or all
of a tile store cache's tile matrix set

GET /config/crs/list - list available CRS
definitions

POST /config/crs/getcodes with wkt=<wkt> - retrieves a list of CRS
codes corresponding to the WKT (POSTed KVP)

GET /config/crs/<code> - checks if a CRS
definition is available, returns true/false

GET /config/validate[/path] - validate currently
running workspace or file in workspace

GET /config/validate/wsname[/path] - validate workspace with
name <wsname> or file in workspace

GET /config/update/bboxcache[?featureStoreld=] - recalculates the

bounding boxes of all feature stores of the currently running workspace, with the
parameter 'featureStoreId' a comma separated list of feature stores to update can be
passed

GET /config/update/bboxcache/wsname[?featureStoreld=] - recalculates the
bounding boxes of all feature stores of the workspace with name <wsname>, with the
parameter 'featureStoreId' a comma separated list of feature stores to update can be
passed

PUT /config/upload/wsname.zip

<wsname>

PUT /config/upload/path/file

current workspace

PUT /config/upload/wsname/path/file
workspace with name <wsname>

DELETE /config/delete[/path]

running workspace or file in workspace
DELETE /config/delete/wsname[/path]
name <wsname> or file in workspace

upload workspace

upload file into

upload file into

delete currently

delete workspace with

HTTP response codes used:

200 - ok

403 - if you tried something you shouldn't have

404 - if a file or directory needed to fulfill a request was not found
500 - if something seriously went wrong on the server side

17.2. Detailed explanation

Let’s see how the commands work in detail. In general, you can specify a path relative to the
workspace almost anywhere. With no path given, you act on the workspace, with a path given, you
act on that part of the workspace.

259

17.2.1. Downloading

In order to download the complete workspace, you request http:/localhost:8080/deegree-
webservices/config/download. Since the workspace is made up of many files, you get a .zip file. If you
just want to download the FeatureStore configuration named inspire, you request
http://localhost:8080/deegree-webservices/config/download/datasources/feature/inspire.xml.

To use a different workspace instead of the currently running one, use http./localhost:8080/deegree-
webservices/config/download/otherworkspace (you may also specify a file within that workspace).

17.2.2. Restarting

You can restart the currently running workspace using http./localhost:8080/deegree-webservices/
config/restart, or start another workspace using http:/localhost:8080/deegree-webservices/config/
restart/anotherworkspace. To restart all resources connected a specific one use eg.
http://localhost:8080/deegree-webservices/config/restart/datasources/feature/inspire.

17.2.3. Updating

You can update the currently running workspace using http://localhost:8080/deegree-webservices/
config/update, or by name http://localhost:8080/deegree-webservices/config/update/thisworkspace.
Updating a workspace means that all resource changed since the last update or restart are
restarted.

17.2.4. Listing

You can see what workspaces are available to the deegree installation by running
http://localhost:8080/deegree-webservices/config/listworkspaces.

You can also browse through a workspace’s files by requesting e.g. http:/localhost:8080/deegree-
webservices/config/list/datasources/, or to see the files in a workspace other than the one currently
running http://localhost:8080/deegree-webservices/config/list/someworkspace/services.

17.2.5. Storing

You can update or add files in a workspace, or upload a completely new workspace by sending an
HTTP PUT request.

To upload a new workspace, send a .zip file with the workspace contents to http:/localhost:8080/
deegree-webservices/config/upload/someworkspace.zip. This will extract the workspace as
someworkspace. Note that there should not be a parent directory in the .zip, it should contain
folders like datasources or service directly.

To upload individual files send requests against http:/localhost:8080/deegree-webservices/config/
upload/path/to/file.xml, or with a workspace name prefix as usual (http:/localhost:8080/deegree-
webservices/config/upload/someworkspace/and/the/path/file.xml).

260

http://localhost:8080/deegree-webservices/config/download
http://localhost:8080/deegree-webservices/config/download
http://localhost:8080/deegree-webservices/config/download/datasources/feature/inspire.xml
http://localhost:8080/deegree-webservices/config/download/otherworkspace
http://localhost:8080/deegree-webservices/config/download/otherworkspace
http://localhost:8080/deegree-webservices/config/restart
http://localhost:8080/deegree-webservices/config/restart
http://localhost:8080/deegree-webservices/config/restart/anotherworkspace
http://localhost:8080/deegree-webservices/config/restart/anotherworkspace
http://localhost:8080/deegree-webservices/config/restart/datasources/feature/inspire
http://localhost:8080/deegree-webservices/config/update
http://localhost:8080/deegree-webservices/config/update
http://localhost:8080/deegree-webservices/config/update/thisworkspace
http://localhost:8080/deegree-webservices/config/listworkspaces
http://localhost:8080/deegree-webservices/config/list/datasources/
http://localhost:8080/deegree-webservices/config/list/datasources/
http://localhost:8080/deegree-webservices/config/list/someworkspace/services/
http://localhost:8080/deegree-webservices/config/upload/someworkspace.zip
http://localhost:8080/deegree-webservices/config/upload/someworkspace.zip
http://localhost:8080/deegree-webservices/config/upload/path/to/file.xml
http://localhost:8080/deegree-webservices/config/upload/path/to/file.xml
http://localhost:8080/deegree-webservices/config/upload/someworkspace/and/the/path/file.xml
http://localhost:8080/deegree-webservices/config/upload/someworkspace/and/the/path/file.xml

17.2.6. Deleting

Deletion works just like storing, except you send HTTP DELETE requests and instead of the upload
path component you use delete. You can also delete whole directories with content by specifying
just the path to the directory. Deleting workspaces is also possible, just specify the workspace name
(without a .zip suffix).

17.2.7. Invalidating tile store caches

This is a special operation only possible for CachingTileStore resources. You can invalidate the
whole cache, or just a part of it by requesting http:/localhost:8080/deegree-webservices/config/
invalidate/datasources/tile/configname/matrixsetname. You can specify a bounding box by
appending it in the form ?bbox=minx,miny,maxx,maxy (just like in WMS requests).

17.2.8. CRS queries

You can get a list of all available CRS definitions by requesting http:/localhost:8080/deegree-
webservices/config/crs/list. Check if a specific CRS is configured in deegree by requesting
http://localhost:8080/deegree-webservices/config/crs/EPSG:12345. The response will be the text true
or false, depending on whether the CRS is defined or not. If you have a WKT CRS definition, you can
POST against http.//localhost:8080/deegree-webservices/config/crs/getcodes to get a list of
corresponding identifiers (experimental). Use the wkt parameter when posting to send the WKT
definition.

261

http://localhost:8080/deegree-webservices/config/invalidate/datasources/tile/configname/matrixsetname
http://localhost:8080/deegree-webservices/config/invalidate/datasources/tile/configname/matrixsetname
http://localhost:8080/deegree-webservices/config/crs/list
http://localhost:8080/deegree-webservices/config/crs/list
http://localhost:8080/deegree-webservices/config/crs/EPSG:12345
http://localhost:8080/deegree-webservices/config/crs/getcodes

Chapter 18. deegree GML tools CLI

The deegree GML tools command line interface (CLI) provides commands to generate SQL DDL
scripts and deegree SQLFeatureStore configuration files from GML application schemas.
Furthermore, it provides a interface to load a GML file from disk into a deegree SQLFeatureStore
splitting large files into smaller chunks so that even huge (1 GB and more) files can be imported.

You can download the latest release from https://repo.deegree.org/repository/public/org/deegree/
deegree-tools-gml/.

18.1. Prerequisite

Java is installed and the JAVA_HOME system environment variable points to the correct installation
directory of a compatible JDK. Supported JDK versions are listed in System requirements.

18.2. General Usage

The executable JAR file contains help information. The following command line option shows the
usage:

java -jar deegree-tools-gml.jar -h
Results in:

The deegree CLI includes tools to create SQLFeatureStore configurations and load GML
files.
Use the keywords 'SqlFeatureStoreConfigCreator' or 'GmlLoader' to choose between the
tools:

SqlFeatureStoreConfigCreator -h (Prints the usage for this tool)

GmlLoader -h (Prints the usage for this tool)

18.3. Using the SqlFeatureStoreConfigCreator CLI

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -h

Results in:

262

https://repo.deegree.org/repository/public/org/deegree/deegree-tools-gml/
https://repo.deegree.org/repository/public/org/deegree/deegree-tools-gml/

Usage: java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -schemaUrl=<url-or
-path/to/file> [options]

arguments:
-schemaUrl=<url-or-path/to/file>, path to the schema, may be an local reference or
http url

options:

-format={deegree|ddl|all}, default=deegree

-srid=<epsg_code>, default=4258

-idtype={int|uuid}, default=int

-mapping={relational|blob}, default=relational

-dialect={postgis|oracle}, default=postgis

-cycledepth=INT, positive integer value to specify the depth of cycles, default=0

-1listOfPropertiesWithPrimitiveHref=<path/to/file>, not set by default

-referenceData=<path/to/file> (GML Feature collection containing reference features.
The generated config is simplified to map this feature collection.)

-useRefDataProps={true|false}, default: false (true if mapping should be created only
for properties defined in referenceData)

The option listOfPropertiesWithPrimitiveHref references a file listing properties
which are written with primitive instead of feature mappings (see deegree-webservices
documentation and README of this tool for further information):

—————————— begin file ----------

lines beginning with an # are ignored

property with namespace binding
{http://inspire.ec.europa.eu/schemas/ps/4.0}designation

property without namespace binding

designation

empty lines are ignored

leading and trailing white spaces are ignored
—————————— end file ----------

The SQL DDL and XML output is written into files in the current directory. The filename of each file
is derived from the schema file name in the given schemaUr1.

18.3.1. Usage of option cycledepth

Some GML application schemas defines cycles, e.g. Sensor Web Enablement (SWE) Common Data
Model: Quantity may have a complex property "quality”, which may have a Quantity. In deegree it
is not possible to configure infinite dependencies and it is not recommended to configure deep
structures. With the option cycledepth the max depth can be specified. The default is 0 which
means, that writing of the configuration and DDL stops as soon as a cycle is detected. This is the
recommended behaviour.

18.3.2. Usage of option listOfPropertiesWithPrimitiveHref

The option listOfPropertiesWithPrimitiveHref references a file listing properties which are written

263

http://schemas.opengis.net/sweCommon/2.0/simple_components.xsd
http://schemas.opengis.net/sweCommon/2.0/simple_components.xsd

with primitive instead of feature mappings.

For example, in some INSPIRE themes codelists values are stored in xlink:href attributes.
Corresponding to the GML application schema the type is a gml:ReferenceType. Usually deegree
would handle this as feature mapping but it is recommended to use a primitive mapping here.

Primitive mapping enables direct filtering on those properties with deegree. For example, filtering
on INSPIRE codelist hrefs is possible then.

Syntax of content of file:
{NamespaceURI}1ocalPart

If multiple properties shall use primitive mappings, they must be listed in new lines.

Example:

{http://inspire.ec.europa.eu/schemas/gn/4.0}nativeness
{http://inspire.ec.europa.eu/schemas/ps/4.0}designation

18.3.3. Usage of option referenceData

The data which should be imported in a SQLFeatureStore may be much less complex than the GML
application schema. This option allows to reference sample data which must be the highest
complexity level as the data to import in the SQLFeatureStore configured with the generated
configuration. The referenced file must contain a GML 3.2 FeatureCollection containing at least one
featureMember. The SqlFeatureStoreConfigCreator considers this data and tries to create a
configuration with less complexity than the GML application schema allows. This concerns the
cardinality of properties, e.g. if a property may occur multiple times but occurs only one time in the
data, the configuration is limited to exact one occurrence of this property. The number of joins is
reduced, which speeds up the creation of the java representation of the features. This option effects
also the generated mappings of feature types. If the option is missing the mapping is generated for
each feature type defined in the application schema. If reference data are passed only mappings for
feature types with features in the reference data are generated.

Reducing the complexity of the mapping can result in a much faster processing of requests,
especially of GetMap requests. The features requested via WFS (GetFeature requests) are still
schema conform.

Example content of the referenced file:

<?xml version='1.0"' encoding="UTF-8'?>
<gml:FeatureCollection xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gm1/3.2">
<gml:featureMember>
<au:AdministrativeUnit xmlns:au="http://inspire.ec.europa.eu/schemas/au/4.0"
xmlns:gml="http://www.opengis.net/gml/3.2" xmlns:gn=

264

"http://inspire.ec.europa.eu/schemas/gn/4.0" xmlns:base=
"http://inspire.ec.europa.eu/schemas/base/3.3" xmlns:gmd=
“http://www.isotc211.0rg/2005/gmd" xmlns:xLlink="http://www.w3.0rg/1999/x1link"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance" gml:id=
"AdministrativeUnit_DERPKP0100000npz">

<gml:identifier codeSpace="http://inspire.ec.europa.eu/ids"
>https://deegree.org/id/Administrativelnit_1</gml:identifier>

<au:geometry>

</au:geometry>
<au:nationalCode>987789</au:nationalCode>
<au:inspireld>
<base:Identifier>
<base:localld>AdministrativeUnit_1</base:localld>
<base:namespace>https://deegree.org/id</base:namespace>
</base:Identifier>
</au:inspireld>
<au:nationallevel xlink:href=
"http://inspire.ec.europa.eu/codelist/AdministrativeHierarchylLevel/5thOrder"/>
<au:nationallevelName>
<gmd:LocalisedCharacterString>Gemeinde</gmd:LocalisedCharacterString>
</au:nationallevelName>
<au:country>
<gmd:Country codelist="http://inspire.ec.europa.eu/codelist/CountryCode"
codelistValue="DE">DE</gmd:Country>
</au:country>
<au:name>
<gn:GeographicalName>
<gn:language>deu</gn:language>
<gn:nativeness xlink:href=
"http://inspire.ec.europa.eu/codelist/NativenessValue/endonym"/>
<gn:nameStatus xlink:href=
"http://inspire.ec.europa.eu/codelist/NameStatusValue/official"/>
<gn:sourceOfName nilReason="unknown" xsi:nil="true"/>
<gn:pronunciation nilReason="other:unpopulated" xsi:nil="true"/>
<gn:spelling>
<gn:SpellingOfName>
<gn:text>Test</gn:text>
<gn:script>Latn</gn:script>
</gn:SpellingOfName>
</gn:spelling>
</gn:GeographicalName>
</au:name>
<au:residenceOfAuthority nilReason="other:unpopulated" xsi:nil="true"/>
<au:beginLifespanVersion>2021-09-08T13:49:447</au:beginlLifespanVersion>
<au:lowerLevelUnit xlink:href="#AdministrativeUnit_2"/>
<au:lowerLevelUnit xlink:href="#AdministrativeUnit_3"/>
<au:upperlLevelUnit xlink:href="#AdministrativeUnit_4"/>
<au:boundary nilReason="other:unpopulated" xsi:nil="true"/>
</au:AdministrativeUnit>
</gml:featureMember>

265

</gml:FeatureCollection>

18.3.4. Usage of option useRefDataProps

The option useRefDataProps must be used with the option referenceData and results in a more
reduced mapping:

* Mapping of optional properties not in the referenceData is omitted.

» Mapping of properties with xsi:nil="true" in the referenceData is reduced to the mapping of
@xsi:nil and @nilReason.

18.4. Using the GmlLoader CLI GmlLoader

java -jar deegree-tools-gml.jar GmllLoader -h
Results in:

Usage: java -jar deegree-tools-gml.jar GmlLoader -pathToFile=<path/to/gmlfile>
-workspaceName=<workspace_identifier> -sqlFeatureStoreld=<feature_store_identifier>
[options]

Description: Imports a GML file directly into a given deegree SQLFeatureStore

arguments:
-pathToFile=<path/to/gmlfile>, the path to the GML file to import
-pathTolist=<path/to/listfile>, the path to the file containing the files to import
(one path per line. lines starting with # will be ignored)
-workspaceName=<workspace_identifier>, the name of the deegree workspace used for the
import. Must be located at default DEEGREE_WORKSPACE_ROOT directory
-sqlFeatureStoreld=<feature_store_identifier>, the ID of the SQLFeatureStore in the
given workspace

options:

-reportWriteStatistics=true, create a summary of all written feature types, disabled
by default

-reportFile=GmlLoader.log, the name and optionally path to the report file, defaults
to GmllLoader.log

-disabledResources=<urlpatterns>, a comma separated list url patterns which should
not be resolved, not set by default

-chunkSize=<features_per_chunk>, number of features processed per chunk

-skipReferenceCheck=true, skip integrity check for feature references

-dryRun=true, enable dry run where writing is skipped (checks only if all data can be
read), disabled by default

Example:

java -jar deegree-tools-gml.jar GmlLoader -pathToFile=/path/to/cadastralparcels.gml
-workspaceName=1inspire -sqlFeatureStoreld=cadastralparcels

266

18.4.1. Usage of option skipReferenceCheck

In normal operation, the GmlLoader checks if all referenced features were included in the
operation. The order in which the objects appear and how they are distributed among files is not
relevant. However, there are use cases where the check has to be omitted, which can be done by
specifying the parameter -skipReferenceCheck=true. This may be the case if the entire dataset is too
large to be loaded in a single operation or the check can only be performed after the loading
operation has finished.

18.5. Examples

Generate SQL DDL for INSPIRE Cadastral Parcels 4.0 with UUIDGenerator

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -srid=25832 -format=ddl
-idtype=uuid
-schemalrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated file is './CadastralParcels.sql'.

Generate deegree SQLFeatureStore for INSPIRE Cadastral Parcels 4.0 with UUIDGenerator

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -srid=25832
-format=deegree -idtype=uuid
-schemalrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated file is "./CadastralParcels.xml'.

Generate SQL DDL for INSPIRE Cadastral Parcels 4.0 with AutoIDGenerator

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -srid=25832 -format=ddl
-idtype=int -schemaUrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated file is './CadastralParcels.sql'.

Generate deegree SQLFeatureStore for INSPIRE Cadastral Parcels 4.0 with AutoIDGenerator

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -srid=25832
-format=deegree -idtype=int
-schemalrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated file is './CadastralParcels.xml'.

Generate deegree SQLFeatureStore and SQL DDL for INSPIRE Cadastral Parcels 4.0 with
AutoIDGenerator

267

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -srid=25832 -format=all
-idtype=int -schemaUrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd
The generated files are './CadastralParcels.sql' and './CadastralParcels.xml'.
Generate deegree SQLFeatureStore and SQL DDL for INSPIRE Cadastral Parcels 4.0 with Blob-

Mapping

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -format=all -mapping=blob
-schemalrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated files are './CadastralParcels.sql' and './CadastralParcels.xml' with Blob-Mapping for
PostGIS.
Generate deegree SQLFeatureStore and SQL DDL for INSPIRE Cadastral Parcels 4.0 for Oracle

DBMS with Oracle Locator

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -format=all
-dialect=oracle
-schemaUrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated files are './CadastralParcels.sql' and './CadastralParcels.xml' with relational mapping
for Oracle Locator.

Generate deegree SQLFeatureStore for INSPIRE Cadastral Parcels 4.0 with list of properties

with primitive href

java -jar deegree-tools-gml.jar SqlFeatureStoreConfigCreator -format=deegree
-1istOfPropertiesWithPrimitiveHref=<path/to/file>
-schemalrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

The generated file is './CadastralParcels.xml'. All properties listed in the referenced file are written
with primitive instead of feature mappings.

18.5.1. Configure proxy

Set the http.proxyHost, http.proxyPort and http.nonProxyHosts config properties to define proxy
settings for HTTP. To configure proxy settings for HTTPS use https as a prefix.

Example for http proxy:

java -jar -Dhttp.proxyHost=your-proxy.net -Dhttp.proxyPort=80 deegree-tools-gml.jar
SqlFeatureStoreConfigCreator -format=ddl -idtype=uuid
-schemaUrl=http://inspire.ec.europa.eu/schemas/cp/4.0/CadastralParcels.xsd

268

Chapter 19. Java modules and libraries

deegree webservices is a Java web application and based on code written in the Java programming
language. As a user, you usually don’t need to care about this, unless you want to extend the default
functionality available in a deegree webservices setup. This chapter provides some basic
knowledge of JAR (Java archive) files, the Java classpath and describes how deegree webservices
finds JARs. Additionally, it provides precise instructions for adding JARs so your deegree
webservices instance can connect to Oracle Spatial and Microsoft SQL Server databases.

e The terms JAR, module and library are used interchangeably in this chapter.

19.1. Java code and the classpath

Java code is usually packaged in JAR files. If you want to extend deegree’s codebase, you will have
to add one or more JAR files to the so-called classpath™. Basically, there are two different types of
classpaths that determine which JAR files are available to deegree webservices:

* The web application classpath

* The workspace classpath

The full classpath used by deegree webservices consists of the web application classpath and the
workspace classpath. If conflicting files exist on both classpaths, the file on the workspace classpath
takes precedence.

If you're not familiar with classpath concepts and don’t have any special
(;) requirements, simply add your JAR files to the workspace classpath and ignore the
' web application classpath.
19.1.1. Web application classpath

As deegree webservices is a Java web application, standard paths apply:

* Directory WEB-INF/Iib of the deegree web application (for JARs)
» Directory WEB-INF/classes of the deegree web application (for Java class files)

* Global directories for all web applications running in the container (depends on the actual web
container)

When you add files to the web application classpath, you have to restart the web application or the
web application container to make the new code available to deegree webservices.

o All Java libraries shipped with deegree webservices are located in the WEB-INF/lib
directory of the deegree webservices webapp.

19.1.2. Workspace classpath

When deegree webservices initializes the workspace, it scans directory modules/ of the active

269

deegree workspace for files ending with .jar and adds them to the classpath. This can be very
handy, as it allows to create self-contained workspaces (no fiddling with other directories required)
and also has the benefit that you can reload the deegree workspace only after adding your libraries
(instead of restarting the deegree webapp or the whole web application container).

In addition to workspace directory modules/, directory classes/ can be used to add
o individual Java classes (and other files) to the classpath. This is usually not
required.

Since deegree 3.4 jdbc drivers are no longer loaded from workspace classpath.

A Instead, deegree follows the commonly used method to only use jdbc drivers
which are available either by the system (shared or server libraries) or by the
application (WEB-INF/1ib).

19.2. Checking available JARs

In order to see which JARs are available to your deegree webservices instance/workspace, use the
"module info" link in the general section of the administration console:

Security hint: No password has been set.

Active workspace: default(external) [Reload] [Validate]

Home

Figure 58. Displaying available JARs using the administration console

The deegree module section displays the JARs found on the web application classpath.

19.3. Adding database modules

By default, deegree webservices includes everything that is needed for connecting to
PostgreSQL/PostGIS and Derby databases. If you want to connect to an Oracle Spatial or Microsoft
SQL Server instance, you need to add additional libraries manually, as the required JDBC libraries
are not included in the deegree webservices download (for license reasons).

19.3.1. Adding Oracle support
The following deegree resources support Oracle Spatial databases:

» SimpleSQLFeatureStore

* SQLFeatureStore

270

¢ ISOMetadataStore

In order to enable Oracle connectivity for these resources, you need to add a compatible Oracle
JDBC driver (e.g. ojdbc17.jar)"” (see Java code and the classpath).

19.3.2. Adding Oracle GeoRaster support

The OracleGeoraster coverage store supports GeoRaster Objects stored in Oracle databases.

In order to enable Oracle connectivity for these resources, you need to add the following JAR files
(see Java code and the classpath):

[10]

* A compatible Oracle JDBC-driver
o ojdbcl7.jar

» The Oracle Spatial and GeoRaster libraries and their dependencies
o sdoapi.jar
o sdogr.jar
o sdotype.jar
o sdoutl.jar
o xdb.jar

o xmlparserv2_sans_jaxp_services.jar

The Oracle Spatial and GeoRaster libraries can be found, without version number
in filename, inside the Oracle Database installation directory. The sdo* files can be
o found at ORACLE_HOME/md/jlib, xdb.jar and xmlparserv2_sans_jaxp_services.jar
are available at maven central xdb:[https://repol.maven.org/maven2/com/oracle/
database/xml/xdb/] and xmlparserv2_sans_jaxp_services:[https://repol.maven.org/
maven2/com/oracle/database/xml/xmlparserv2_sans_jaxp_services/].

19.3.3. Adding Microsoft SQL server support

The following deegree resources support Microsoft SQL Server:

» SimpleSQLFeatureStore
* SQLFeatureStore
* ISOMetadataStore
In order to enable Microsoft SQL Server connectivity for these resources, you need to add a

compatible Microsoft JDBC driver (e.g. mssqljdbc-13.2.0.jre1l.jar)"" (see Java code and the
classpath).

[8] The term classpath describes the set of files or directories which are used to find the available Java code (JARs and class files).
[9] https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
[10] https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

[11] https://learn.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server

271

https://repo1.maven.org/maven2/com/oracle/database/xml/xdb/
https://repo1.maven.org/maven2/com/oracle/database/xml/xdb/
https://repo1.maven.org/maven2/com/oracle/database/xml/xmlparserv2_sans_jaxp_services/
https://repo1.maven.org/maven2/com/oracle/database/xml/xmlparserv2_sans_jaxp_services/
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html
https://learn.microsoft.com/en-us/sql/connect/jdbc/download-microsoft-jdbc-driver-for-sql-server

Chapter 20. GDAL components

The GDAL library (https://www.gdal.org/) provides very comprehensive support for all kinds of
geospatial raster formats. Any of these raster formats can be used to create Map layers for a
deegree workspace by using either the GDAL Layer or the GDAL Tile Store.

If there are alternative options for plugging your raster files into the deegree
workspace (e.g. by using the GeoTIFFTileStore for GeoTIFF files), you may want to
consider them first. As the GDAL library is not written in Java, it is required to
install and connect additional (non-deegree) components in order to use it.
Additionally, some technical considerations about GDAL dataset pooling and GDAL
memory settings may be necessary to achieve optimal performance.

20.1. Connecting GDAL and deegree

Before you can set up GDAL-based resources, the native GDAL library has to be installed correctly
and must be accessible by your deegree webservices installation. Please see https://www.gdal.org/
for general GDAL installation instructions.

Currently, GDAL library version 3 is supported.

deegree uses version 3.6.0 of the GDAL jar file. Most likely, this is compatible with
any minor version of GDAL library 3. The deegree developer team tested several
combinations without detecting any issues. However, if any problems occur, you
might try to exchange the version of the GDAL jar file inside the webapp to the
GDAL library version installed on your operating system. The gdal-VERSION.jar is
located in deegree-webapp/WEB-INF/lib/. You can delete it from the exploded war
archive (make sure that the deegree-webservices.war is removed from webapp
folder after shutting down Tomcat). Afterward, copy the correct gdal-VERSION.jar
into deegree-webapp/WEB-INF/lib/.

In order to verify that deegree webservices can use the GDAL library, check the log file of the web

container (e.g. catalina.out for Tomcat). If you didn’t configure a GDAL settings file in your

workspace yet, you should be able to locate the following lines upon workspace startup:

[13:06:40]

[13:06:40]
[13:06:40]

[13:06:40]
adapter.

If a valid GDAL settings file is present in the active deegree workspace, the corresponding lines

INFO: [GdalSettings]

INFO: [GdalSettings] GDAL INI adapter.
INFO: [GdalSettings]

INFO: [GdalSettings] No gdal.xml in workspace. Not initializing GDAL INI

should look similar to this:

272

https://www.gdal.org/
https://www.gdal.org/

[13:16:54]

: [GdalSettings]

[13:16:54]
[13:16:54]

: [GdalSettings] GDAL INI adapter.
: [GdalSettings]

[13:16:54]
[13:16:54]
[13:16:54]

: [GdalSettings] Using 'gdal.xml' from workspace for GDAL settings.
: [GdalSettings] Max number of open GDAL datasets: 5
: [GdalSettings] GDAL initialized successfully.

In case a the GDAL settings file is present, but the GDAL library cannot be accessed, you will see
something like the following:

[13:11:08]

: [GdalSettings]

[13:11:08]
[13:11:08]

: [GdalSettings] GDAL INI adapter.
: [GdalSettings]

[13:11:08]

INFO:

[GdalSettings] Using 'gdal.xml' from workspace for GDAL settings.

Native library load failed.
java.lang.UnsatisfiedLinkError: no gdaljni in java.library.path
[13:11:08] ERROR: [JsfUtils] Workspace startup failed:
org.gdal.gdal.gdalINI.Al1Reqgister()V(class java.lang.UnsatisfiedLinkError)
java.lang.UnsatisfiedLinkError: org.gdal.gdal.gdalINI.A11Register()V
at org.gdal.gdal.gdalINI.AllRegister(Native Method)
at org.gdal.gdal.gdal.AllRegister(gdal.java:499)
at org.deegree.commons.gdal.GdalSettings.registerOnceQuietly(GdalSettings.java:113)
at org.deegree.commons.gdal.GdalSettings.registerGdal(GdalSettings.java:97)
at org.deegree.commons.gdal.GdalSettings.init(GdalSettings.java:92)

[...]

In this case, ensure that the GDAL library is installed on your system and available via the dynamic
library path used by the Java VM. You may need to adapt environment variables (e.g.
LD _LIBRARY PATH on Linux) to achieve this.

20.2. GDAL settings

The GDAL settings file gdal.xml belongs in the main directory of the deegree workspace.

20.2.1. Minimal GDAL settings example

The only mandatory element is OpenDatasets. A minimal valid configuration example looks like

this:

GDAL settings (minimal example)

273

<GDALSettings
xmlns="http://www.deegree.org/gdal" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://www.deegree.org/gdal
https://schemas.deegree.org/core/3.6/commons/gdal/gdal.xsd">
<OpenDatasets>5</0penDatasets>
</GDALSettings>

This configuration will register the GDAL JNI adapter and will allow a maximum of five GDAL
datasets to be kept open for simultaneous access.

20.2.2. More complex GDAL settings example

GDAL settings (more complex example)

<GDALSettings
xmlns="http://www.deegree.org/gdal" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://www.deegree.org/gdal
https://schemas.deegree.org/core/3.6/commons/gdal/gdal.xsd" />
<OpenDatasets>10</0penDatasets>
<GDALOption name="GDAL_CACHEMAX">1000</GDALOption>
<GDALOption name="ECW_CACHE_MAXMEM">419430400</GDALOption>
</GDALSettings>

This configuration will register the GDAL JNI adapter with the following settings:

* A maximum of ten GDAL datasets will be kept open for simultaneous access
* GDAL option GDAL_CACHEMAX is set to 1000
* GDAL option ECW_CACHE_MAXMEM is set to 419430400

A list of general GDAL parameters is available at https://trac.osgeo.org/gdal/wiki/
o ConfigOptions. Some parameters (such as ECW_CACHE MAXMEM) are format
specific and outlined on the respective pages in the GDAL documentation.

20.2.3. Configuration options

The configuration format for the GDAL settings file is defined by schema file
https://schemas.deegree.org/core/3.6/commons/gdal/gdal.xsd. The following table lists the two
available configuration options. When specifying them, their order must be respected.

Option Cardinality Value Description
OpenDatasets 1..1 Integer Number of open datasets / simultaneous file accesses
GDALOption 0..n String Name / value of parameter to pass on to the GDAL library

274

https://trac.osgeo.org/gdal/wiki/ConfigOptions
https://trac.osgeo.org/gdal/wiki/ConfigOptions
https://schemas.deegree.org/core/3.6/commons/gdal/gdal.xsd

20.3. GDAL Layer

A GDAL Layer is a map layer that is backed by one or more raster files. The native GDAL library is
used to determine some metadata (e.g. bounding box) and to access the actual raster data.

e You may want to refer to the Map layers chapter for general information on using
and defining layer resources.

20.3.1. Configuration example
The only custom element in a GDAL Layer definition is File. A valid example looks like this:

GDAL Layers (example)

<GDALLayers
xmlns="http://www.deegree.org/layers/gdal" xmlns:d=
"http://www.deegree.org/metadata/description”
xmlns:1="http://www.deegree.org/layers/base" xmlns:s=
"http://www.deegree.org/metadata/spatial”>
<GDALLayer>
<1:Name>1luchtfoto_2010</1:Name>
<d:Title>Orthophoto layer served from an ECW file</d:Title>
<s:CRS>EPSG:28992 EPSG:25831</s: (RS>
<1:ScaleDenominators min="0" max="10000" />
<File>/geodata/ecw/2010/Luchtfoto2010_25cm.ecw</File>
</GDALLayer>
</GDALLayers>

This configuration will create a single layer resource with the following settings:

The file defines a single layer only

Name of the layer is luchtfoto_2010

Layer is offered in coordinate reference systems EPSG:28992 and EPSG:25831

File /geodata/ecw/2010/Luchtfoto2010_25cm.ecw will be accessed via GDAL to retrieve metadata
and raster data

20.4. GDAL Tile Store

A GDAL tile store defines one or more tile data sets. Each of these tile data sets is based on a single
raster file which is accessed using the native GDAL library.

o You may want to refer to the Tile stores chapter for general information on using
and defining tile store resources.

275

20.4.1. Minimal configuration example
A minimal valid configuration example looks like this:

GDAL Tile Store: Minimal configuration

<GDALTileStore
xmlns="http://www.deegree.org/datasource/tile/gdal" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/gdal
https://schemas.deegree.org/core/3.6/datasource/tile/gdal/gdal.xsd">
<TileDataSet>
<TileMatrixSetId>utah</TileMatrixSetId>
<File>../../data/test.tif</File>
</TileDataSet>
</GDALTileStore>

This configuration will create a GDAL tile store resource with the following settings:

* Tile store defines a single tile data set
* Name of the tile data set is test (derived from file name)

¢ Tile matrix set is utah

File ../../data/test.tif will be accessed via GDAL to retrieve the raster data

Output tile format is not set, defaults to image/png

20.4.2. More complex configuration example
A more complex example that uses all available configuration options:

GDAL Tile Store: More complex configuration

276

<GDALT1ileStore
xmlns="http://www.deegree.org/datasource/tile/gdal" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/gdal
https://schemas.deegree.org/core/3.6/datasource/tile/gdal/gdal.xsd">
<TileDataSet>
<Identifier>2010</Identifier>
<TileMatrixSetId>NLDEPSG28992Scale</TileMatrixSetId>
<File>/geodata/ecw/2010/Luchtfoto2010_25cm.ecw</File>
<ImageFormat>image/jpeg</ImageFormat>
</TileDataSet>
<TileDataSet>
<Identifier>2011</Identifier>
<TileMatrixSetId>NLDEPSG28992Scale</TileMatrixSetId>
<File>/geodata/ecw/2011/Mozaiek2011.ecw</File>
<ImageFormat>image/jpeg</ImageFormat>
</TileDataSet>
</GDALTileStore>

This configuration will create a GDAL tile store resource with the following settings:

 Tile store defines two tile data sets with identifiers 2010 and 2011

e Tile matrix set is NLDEPSG28992Scale

Tile data set 2010 is backed by file /geodata/ecw/2010/Luchtfoto2010_25cm.ecw

Tile data set 2011 is backed by file /geodata/ecw/2011/Mozaiek2011.ecw

* Output tile format is image/jpeg

20.4.3. Configuration options

The configuration format for the GDAL tile store is defined by schema

file

https://schemas.deegree.org/core/3.6/datasource/tile/gdal/gdal.xsd. There’s only a single

configuration element, but it may occur several times:

Option Cardinality Value Description

TileDataSet 1.n Complex GDAL-based tile data set

Each TileDataSet element defines a single tile data set:

Option Cardinal Value Description
ity
Identifier 0.1 String Identifier of the tile data set, default: base file name without
path and suffix
TileMatrixSet 1..1 String Reference to the identifier of corresponding tile matrix set
Id
File 1.1 String Raster file that contains the tile data, read using GDAL

277

https://schemas.deegree.org/core/3.6/datasource/tile/gdal/gdal.xsd

Option Cardinal Value Description
ity

ImageFormat O0..1 String Output tile format, default: image/png

278

Chapter 21. Appendix

The following chapters of the documentation are aimed at users with specialized knowledge on the
inner workings of deegree.

As the internal workings of deegree are always evolving, the information in these
o chapters might become obsolete without any prior notice. There is no guarantee
for anything described in here to be the same for future versions of deegree.

21.1. Tunable deegree parameters

How to set up deegree is described in the chapter Configuration basics and following. If it is
required to change the default behavior of deegree in more specific use cases, this can be done
through setting tunable deegree specific parameters.

These parameters can either be set through Java system property, for example when starting
command line tools by adding the parameter in form of -Dparameter=value. When deploying
deegree webservices to existing Java Servlet container, these options can either be defined as
system property or through JNDI environment definitions. "*

Example of JNDI environment

When using JNDI environment, more complex configurations are possible. For example, it is
possible to limit the defined parameters to a specific deployment inside a Java Servlet container.

<Environment name="deegree.rendering.stroke.miterlimit" value="2.66"
type="java.lang.Float" override="false"
description="deegree Rendering - Miter Limit Factor"/>

More details on the details of configuration can be found inside the documentation of the used Java
Servlet container like Apache Tomcat.

Table 9. List of current available parameters

Option Type Default Description
Value
deegree.raster.cac java.lang.String Size of memory that can be used to cache raster
he.memsize data in memory. By default, half of the memory
available for the Java Process running deegree is
used.

deegree.raster.cac java.lang.String 20GiB Defines the maximum amount of disk space that

he.disksize can be used for caching raster data on disk. f
deegree.raster.cac java.lang.Boolean true Enable caching of raster data at the reader level,
he.iioreader enabled by default.

279

https://tomcat.apache.org/tomcat-10.1-doc/config/context.html#Environment_Entries

Option

deegree.protocol.
wms.client.fallbac
k

Type

java.lang.Boolean

deegree.rendering java.lang.Float

.stroke.miterlimit

deegree.sqldialect.

consider-all-

java.lang.Boolean

geometry-columns

deegree.sqldialect.

oracle.export_orie
nted_point

deegree.sqldialect.

oracle.optimized_
point_storage

deegree.gdal.layer
limit_bands

java.lang.Boolean

java.lang.Boolean

. java.lang.Boolean

deegree.cache.svgr java.ang.Integer

enderer

deegree.rendering

.Svg-to-
shape.previous

deegree.rendering

java.lang.Boolean

java.lang.Boolean

.graphicstroke.svg-

as-mark

deegree.gml.prope

rty.simple.trim

deegree.config.api
key.warn-when-
disabled

280

java.lang.Boolean

java.lang.Boolean

Default
Value

false

false

false

true

false

256

false

false

true

true

Description

Fall back to the previously used URLConnection
for requests to remote WMS servers, disabled by
default.

When the configured factor is exceeded
portrayal changes from JOIN_MITER to
JOIN_BEVEL (see https://docs.oracle.com/javase/
tutorial/2d/geometry/strokeandfill.html).

Enables the considerations of all geometry
properties of a feature type for GetFeature
requests with bbox parameter and without
property name (all SQL Dialects), as well as the
calculation of the bbox cache (PostgreSQL only).

Read the orientation of Oracle orientated points
as additional properties, disabled by default. The
properties are located in the deegree extraprop
namespace http://www.deegree.org/extraprop
and are named orientation®, orientationt, etc.

Use optimized point storage for 2D points in
oracle database.

If problems occur with data using four bands
(e.g. including transparency or infrared), this
option can be used to limit data access to the
first three bands.

Maximum number of rendered SVG images to be
cached for speed

Enables the behavior of previously used
versions when scaling SVG graphics for the
rendering of strokes

Enables the previous behavior of rendering SVG
graphics in GraphicStroke/OnlineResource like a
Mark with the color of the Stroke instead of a
rendered graphic.

When deegree reads GML data, by default (true)
simple property values get their leading and
trailing whitespace characters removed.

Log warning if security on REST api is disabled
by specifying * in config.apikey.

https://docs.oracle.com/javase/tutorial/2d/geometry/strokeandfill.html
https://docs.oracle.com/javase/tutorial/2d/geometry/strokeandfill.html
http://www.deegree.org/extraprop

Option Type

Default Description

Value

deegree.workspac java.lang.Boolean false

e.allow-font-
loading

21.2. Interception points

(disabled by default).

Allow font registration on workspace startup

deegree offers developers the ability to extend or change deegree with custom modules. This
chapter is only intended as an entry point to make it easier to reach these Java service provider

interfaces.

Service provider interface

org.deegree.sqldialect.SQLDialectProvider

org.deegree.style.styling.mark.WellKnown
NameLoader

org.deegree.filter.function.FunctionProvid
er

org.deegree.sqldialect.filter.function.SQLF
unctionProvider

org.deegree.filter.expression.custom.Custo
mExpression

org.deegree.services.controller.exception.s
erializer.SerializerProvider

org.deegree.services.csw.getrecordbyid.Get
RecordByldHandler

org.deegree.tools.featurestoresql.loader.Fe
atureStreamFactory

org.deegree.coverage.raster.data.container
.MemoryRasterDataContainer

org.deegree.services.wms.controller.plugin
s.OutputFormatProvider

org.deegree.services.wms.controller.plugin
s.GetFeaturelnfoProvider

deegree.gml.parse.recognize-deprecated-
types

Examplary implementation

org.deegree.sqldialect.postgis.PostGISDiale
ctProvider

org.deegree.style.styling.wkn.ShapeLoader

org.deegree.filter.function.other.Lower

org.deegree.sqldialect.filter.function.SQLL
ower

org.deegree.filter.expression.custom.se.Sub
string

org.deegree.services.csw.getrecordbyid.Def
aultGetRecordByldHandler

org.deegree.coverage.raster.data.container
.MemoryRasterDataContainer

org.deegree.services.wms.controller.plugin
s.DefaultOutputFormatProvider

org.deegree.services.wms.controller.plugin
s.DefaultGetFeatureInfoProvider

java.lang.Boolean

Cardinali

ty
0.*

0.1

false

281

21.3. Custom converters for the SQL feature store

Custom converters provide an extension point for plugins to provide a specialized DB-to-
ObjectModel converter implementation.

The configuration is not defined as an XML schema, but consists of the specification of the class and
an optional list of parameters, which in turn consist of keys and values.

A configuration might look something like this:
<CustomConverter class="com.example.CustomConverter">
<Param name="color">RED</Param>

<Param name="size">42</Param>
</CustomConverter>

The following table lists converter that are already available for use or as a reference.

Class Parameter Description
org.deegree.feature.persistence.sql.co Converts binary database columns from/to
nverter.BinaryBase64PrimitiveConve primitive strings encoded as Base64 (RFC
rter 4648)

max-length The maximum length of allowed data is

limited to prevent Denial of Service
Attacks. Specified in bytes and defaults to

256 MiB.
org.deegree.feature.persistence.sql.co Converts binary database columns from/to
nverter.BinaryDataUrlPrimitiveConv primitive strings encoded as data URL (RFC
erter 2397)

max-length The maximum length of allowed data is

limited to prevent Denial of Service
Attacks. Specified in bytes and defaults to
256 MiB.

magic-XX Mime type for records which data start
with the magic numbers (XX) encoded as a
hexadecimal value. The converter contains
some common magic numbers for PNG,

JPEG and GIF.
org.deegree.feature.persistence.sql.co Converts large character type database
nverter.CharacterPrimitiveConverter columns from/to primitive strings

max-length The maximum length of allowed data is

limited to prevent Denial of Service
Attacks. Specified in bytes and defaults to
256 MiB.

Here’s an example:

282

<FeatureTypeMapping table="TABLENAME" name="LargeObjectFeature">
== =2
<Primitive mapping="IMAGE" path="1image" type="string">
<CustomConverter class=
"org.deegree.feature.persistence.sql.converter.BinaryDataUr1PrimitiveConverter">
<Param name="magic-424D">image/bmp</Param>
</CustomConverter>
</Primitive>
</FeatureTypeMapping>

[12] More details can be found in the Java tutorial on the topic of Specifying Environment Properties or your Java Servlet
container.

283

https://docs.oracle.com/javase/jndi/tutorial/beyond/env/source.html#SYS/

	deegree Webservices
	Table of Contents
	Chapter 1. Introduction
	1.1. Characteristics of deegree WFS
	1.2. Characteristics of deegree WMS
	1.3. Characteristics of deegree WMTS
	1.4. Characteristics of deegree CSW
	1.5. Characteristics of deegree WPS

	Chapter 2. Installation
	2.1. System requirements
	2.2. Downloading
	2.3. Starting and stopping
	2.4. Securing deegree
	2.4.1. Software Versions
	2.4.2. Encryption
	2.4.3. Securing the deegree webservices administration console and REST API

	2.5. Logging configuration
	2.5.1. Autoconfiguration
	2.5.2. File-based configuration
	2.5.3. Providing another logging framework

	Chapter 3. Getting started
	3.1. Accessing the deegree webservices administration console
	3.1.1. Downloading and activating example workspaces

	3.2. Example workspace 1: Utah Web Mapping Services
	3.3. Example workspace 2: An ISO Catalogue Service setup
	3.4. Example workspace 3: Web Processing Service demo

	Chapter 4. Configuration basics
	4.1. The deegree workspace
	4.2. Dependencies of the deegree configuration files
	4.3. Location of the deegree workspace directory
	4.3.1. UNIX-like/Linux/macOS
	4.3.2. Windows
	4.3.3. Global configuration files and the active workspace

	4.4. Structure of the deegree workspace directory
	4.4.1. Workspace files and resources
	4.4.2. Resource identifiers and dependencies
	4.4.3. Proxy configuration

	4.5. Using the deegree webservices administration console for managing resources
	4.5.1. Displaying configured resources
	4.5.2. Deactivating a resource
	4.5.3. Editing a resource
	4.5.4. Deleting a resource
	4.5.5. Creating a new resource
	4.5.6. Displaying error messages
	4.5.7. Resource type specific actions

	4.6. Best practices for creating workspaces
	4.6.1. Start from example or from scratch
	4.6.2. Find out which resources you need
	4.6.3. Use a validating XML editor
	4.6.4. Check the resource status and error messages

	Chapter 5. Web services
	5.1. Web Feature Service (WFS)
	5.1.1. Minimal example
	5.1.2. More complex example
	5.1.3. Configuration overview
	5.1.4. General options
	5.1.5. Transactions
	5.1.6. SupportedRequests
	5.1.7. Output formats and defaults
	5.1.8. Adapting GML output formats
	Basic GML format options
	GetFeature response settings
	Coordinate formatters
	Geometry linearization

	5.1.9. Adding GeoJSON output formats
	5.1.10. Adding CSV output formats
	5.1.11. Adding custom output formats
	5.1.12. Stored queries
	5.1.13. Extended capabilities
	5.1.14. Special Features

	5.2. Web Map Service (WMS)
	5.2.1. A word on layers and themes
	5.2.2. Configuration overview
	5.2.3. Basic options
	5.2.4. SupportedRequests
	5.2.5. Service content configuration
	5.2.6. Visibility Inspector
	5.2.7. Custom capabilities formats
	5.2.8. Custom feature info formats
	5.2.9. GeoJSON feature info format
	5.2.10. FeatureInfo templating format
	Introduction/Example
	Templating special constructs

	5.2.11. Custom image output formats
	Custom legend graphic background
	Custom format provider class

	5.2.12. Custom exception formats
	5.2.13. Extended capabilities
	5.2.14. Propagation of supported SLD functionality
	5.2.15. Vendor specific parameters
	5.2.16. XML request encoding
	GetCapabilities
	GetMap
	GetFeatureInfo

	5.2.17. SOAP request encoding
	Capabilities

	5.3. Web Map Tile Service (WMTS)
	5.3.1. Minimal example
	5.3.2. More complex example
	5.3.3. Configuration overview
	5.3.4. A complete WMTS configuration example, based on a GeoTIFFTileStore
	5.3.5. Optimizing deegree WMTS
	5.3.6. Supported steps by the deegree webservices administration console

	5.4. Catalogue Service for the Web (CSW)
	5.4.1. Minimal example
	5.4.2. Configuration overview
	5.4.3. Extended Functionality

	5.5. Web Processing Service (WPS)
	5.5.1. Minimal example
	5.5.2. Complex example
	5.5.3. Configuration overview
	5.5.4. DefaultExecutionManager section

	5.6. Metadata
	5.6.1. Service identification
	5.6.2. Service provider
	5.6.3. Dataset metadata
	Extended description

	5.6.4. Extended capabilities

	5.7. Service controller
	5.7.1. Reported URLs
	5.7.2. Request timeouts

	Chapter 6. Feature stores
	6.1. Features, feature types and application schemas
	6.1.1. Simple vs. rich features and feature types
	6.1.2. Application schemas

	6.2. Shape feature store
	6.2.1. Minimal configuration example
	6.2.2. More complex configuration example
	6.2.3. Configuration options

	6.3. Memory feature store
	6.3.1. Minimal configuration example
	6.3.2. More complex configuration example
	6.3.3. Configuration options

	6.4. Simple SQL feature store
	6.4.1. Minimal configuration example
	6.4.2. More complex configuration example
	6.4.3. Configuration options

	6.5. SQL feature store
	6.5.1. Minimal configuration example
	6.5.2. More complex configuration example
	6.5.3. Overview of configuration options
	6.5.4. Mapping tables to simple feature types
	Customizing the feature type name
	Customizing the feature id
	Customizing the default sort order of features
	Customizing the mapping between columns and properties

	6.5.5. Mapping GML application schemas
	Recommended workflow
	Mapping rich feature types
	Mapping strategies for xlink:href attributes
	Changing the table context
	Handling of NULL values
	BLOB mapping

	6.5.6. Transactions and feature id generation
	Auto id generator
	UUID generator
	Sequence id generator

	6.5.7. Evaluation of query filters
	6.5.8. Spatial extent of FeatureTypes
	6.5.9. Auto-generating database tables

	Chapter 7. Tile stores
	7.1. Tile stores, tile data sets and tile matrix sets
	7.1.1. Pre-defined tile matrix sets
	7.1.2. User-defined tile matrix sets

	7.2. GeoTIFF tile store
	7.2.1. AccessConfig

	7.3. File system tile store
	7.4. Remote WMS tile store
	7.5. Remote WMTS tile store

	Chapter 8. Coverage stores
	8.1. Raster
	8.2. MultiResolutionRaster
	8.3. Pyramid
	8.3.1. Prerequisites for Pyramids

	8.4. Oracle GeoRaster

	Chapter 9. Metadata stores
	9.1. Memory ISO Metadata store
	9.2. SQL ISO Metadata store
	9.3. SQL EBRIM/EO Metadata store

	Chapter 10. Map layers
	10.1. Common configuration
	10.1.1. Description metadata
	10.1.2. Spatial metadata
	10.1.3. Common layer options
	Layer dimensions
	Layer styles
	Rendering options

	10.2. Feature layers
	10.2.1. Auto layers
	10.2.2. Manual configuration

	10.3. Tile layers
	10.4. Coverage layers
	10.4.1. Auto layers
	10.4.2. Manual configuration

	10.5. Remote WMS layers
	10.5.1. Request options
	10.5.2. Layer configuration

	Chapter 11. Map themes
	11.1. Standard themes
	11.2. Remote WMS themes

	Chapter 12. Map styles
	12.1. Overview
	12.2. Basics
	12.2.1. General Layout
	12.2.2. Symbolization Rules
	Stroke
	Fill
	Font

	12.2.3. Advanced symbolization
	Using Graphics
	Size
	Gap
	Rotation
	Displacement
	Halo

	12.3. Using Filters
	12.4. Basic Examples
	12.4.1. Point Symbolizer
	12.4.2. Line Symbolizer
	12.4.3. Polygon Symbolizer
	12.4.4. Text Symbolizer

	12.5. SLD/SE clarifications
	12.5.1. Perpendicular offset/polygon orientation
	12.5.2. ScaleDenominators

	12.6. deegree specific extensions
	12.6.1. SLD/SE extensions
	Use of alternative Symbols within the WellKnownName
	Predefined symbols
	Custom arrow with extshape://arrow
	Custom Symbol from SVG path svgpath://
	Use Symbol from character code ttf://
	Custom Symbol from Well Known Text wkt://
	Spacing around the symbol

	Simplified hatches
	Use of TTF files as Mark symbols
	Label AutoPlacement
	LinePlacement extensions
	ExternalGraphic extensions
	Text with rectangular Halo
	GraphicStroke extensions

	12.6.2. SE & FE Functions
	FormatNumber
	FormatDate
	ChangeCase
	Concatenate
	Trim
	StringLength
	Substring
	StringPosition
	Categorize, Interpolate, Recode
	General XPath functions

	Chapter 13. Filter Encoding
	13.1. Filter Operators
	13.1.1. Arithmetic operators
	13.1.2. Logical operators
	13.1.3. Comparison operators
	13.1.4. Spatial operators

	13.2. Filter expressions
	13.2.1. Simple filter expressions
	Comparative filter expression
	Spatial filter expression

	13.2.2. Advanced filter expressions
	Multiple filter operators
	PropertyIsLike with a function

	13.2.3. Filter expressions on xlink:href attributes

	13.3. Custom FE functions
	13.3.1. Area
	13.3.2. Length
	13.3.3. Centroid
	13.3.4. InteriorPoint
	13.3.5. IsPoint, IsCurve, IsSurface
	13.3.6. GeometryFromWKT
	13.3.7. MoveGeometry
	13.3.8. iDiv
	13.3.9. iMod
	13.3.10. ExtraProp
	13.3.11. GetCurrentScale
	13.3.12. env

	Chapter 14. Server connections
	14.1. JDBC connections
	14.1.1. Minimal configuration example (PostgreSQL)
	14.1.2. Configuration example (Oracle)
	14.1.3. Configuration example (Microsoft SQL Server)
	14.1.4. Configuration example (JNDI)
	14.1.5. Configuration example (Oracle UCP)
	14.1.6. Configuration options
	14.1.7. JDBC connection pools
	14.1.8. PostgreSQL JDBC
	14.1.9. HikariCP
	c3p0

	14.1.10. Legacy configuration format

	14.2. Remote OWS connections
	14.2.1. Remote WMS connection
	14.2.2. Remote WMTS connection

	Chapter 15. Process providers
	15.1. Java process provider
	15.1.1. Minimal configuration example
	15.1.2. More complex configuration example
	15.1.3. Configuration options
	15.1.4. General options
	15.1.5. The Processlet API
	Processlet compilation
	Testing Processlets using raw WPS requests

	15.1.6. Input and output parameters
	Basics of defining input and output parameters
	Basics of accessing input and output parameters
	Literal parameters
	BoundingBox parameters
	Complex parameters

	15.1.7. Asynchronous execution and status information
	Providing status information in the Processlet code

	15.2. FME process provider
	15.2.1. Minimal configuration example

	Chapter 16. Coordinate reference systems
	Chapter 17. deegree REST interface
	17.1. Setting up the interface
	17.2. Detailed explanation
	17.2.1. Downloading
	17.2.2. Restarting
	17.2.3. Updating
	17.2.4. Listing
	17.2.5. Storing
	17.2.6. Deleting
	17.2.7. Invalidating tile store caches
	17.2.8. CRS queries

	Chapter 18. deegree GML tools CLI
	18.1. Prerequisite
	18.2. General Usage
	18.3. Using the SqlFeatureStoreConfigCreator CLI
	18.3.1. Usage of option cycledepth
	18.3.2. Usage of option listOfPropertiesWithPrimitiveHref
	18.3.3. Usage of option referenceData
	18.3.4. Usage of option useRefDataProps

	18.4. Using the GmlLoader CLI GmlLoader
	18.4.1. Usage of option skipReferenceCheck

	18.5. Examples
	18.5.1. Configure proxy

	Chapter 19. Java modules and libraries
	19.1. Java code and the classpath
	19.1.1. Web application classpath
	19.1.2. Workspace classpath

	19.2. Checking available JARs
	19.3. Adding database modules
	19.3.1. Adding Oracle support
	19.3.2. Adding Oracle GeoRaster support
	19.3.3. Adding Microsoft SQL server support

	Chapter 20. GDAL components
	20.1. Connecting GDAL and deegree
	20.2. GDAL settings
	20.2.1. Minimal GDAL settings example
	20.2.2. More complex GDAL settings example
	20.2.3. Configuration options

	20.3. GDAL Layer
	20.3.1. Configuration example

	20.4. GDAL Tile Store
	20.4.1. Minimal configuration example
	20.4.2. More complex configuration example
	20.4.3. Configuration options

	Chapter 21. Appendix
	21.1. Tunable deegree parameters
	21.2. Interception points
	21.3. Custom converters for the SQL feature store

