OSGeo

Pr0]ect

deegree

deegree OGC API - Features
Implementation

lat/lon Gesellschaft fiir raumbezogene Informationssysteme mbH

Version 2.0.2,13.12.2025

Table of Contents

1. Preambel
2. Introduction
2.1. OGC API family
2.2. Features
2.3. Quick Start
3. Terms and Definitions
3.1. dataset
3.2. datasource
3.3. feature
3.4. feature collection
3.5. feature store
3.6. metadata
3.7. WebAPI
3.8. webapp
3.9. workspace
4. Installation
4.1. Requirements
4.2. Download
4.3. Deploy the webapp
4.4. Start the webapp
4.5. Stop the webapp
4.6. Uninstallation
4.7. Docker
4.8. Supported Browser
5. Configuration
5.1. ogcapi workspace
5.2. Configuration files
5.2.1. Datasets configuration
5.2.2. Dataset configuration
5.2.3. Metadata configuration
5.2.4. Feature store configuration
Using schema- or table-driven FeatureStore configurations
5.2.5. HTML encoding configuration
5.3. deegree config REST-API
5.4. Allow access to OpenAPI document from all origins
5.5. Logging configuration
6. Usage
6.1. Datasets overview

© © © ©OW 0 W 0 0 00 N J O O OO OO0 O O O O U b= b= b w

NN NN N R B R R Rl |),
W W NN R, O O 0 gNN R, O O

6.2. Landing page per dataset

6.3. OpenAPI document

6.4. Making a request

6.5. Accessing a response

6.6. Accessing data in JSON/Geo]JSON format
6.7. Accessing data in XML/GML format

6.8. Using the HTML interface

6.9. Using query parameters

7. Help

7.1. Known Issues
7.2. Support
7.3. FAQ

23
24
25
27
27
28
28
31
33
33
33
33

Chapter 1. Preambel

List of Authors: Jens Fitzke, Torsten Friebe, Lyn Goltz, Sabine Schmitz, Dirk Stenger.

lat/lon - Gesellschaft fiir raumbezogene Informationssysteme mbH
info@lat-lon.de, https://www.lat-lon.de/
Im Ellig 1, D-53343 Wachtberg, Germany

© Copyright 2020-2025 lat/lon GmbH, Bonn, Germany.

mailto:info@lat-lon.de
https://www.lat-lon.de/

Chapter 2. Introduction

The deegree OGC API - Features implementation is compliant to the latest OGC standards called OGC
APIs. deegree ogcapi provides a server implementation that has been developed based on deegree’s
existing workspace concept using the API of deegree webservices. Compared to deegree
webservices where spatial data is provided via services such as WFS and WMS with deegree ogcapi
spatial data can be served with a resource-oriented approach.

2.1. OGC API family

The OGC API family of standards are being developed to make it easy for anyone to provide
geospatial data to the web. These standards build upon the legacy of the OGC Web Service
standards (WMS, WFS, WCS, WPS, etc.), but define resource-centric APIs that take advantage of
modern web development practices.

Read more at www.ogcapi.org about the new standards and their goals. The OGC E-learning tutorial
provides more information about the new standards and explains the basic concepts.

2.2. Features

deegree ogcapi supports the following standards:

* OGC API - Features - Part 1: Core
* OGC API - Features - Part 2: CRS by Reference

* OGC API - Features - Part 3: Filtering (Partly) with support for CQL2 intersects function.

The deegree ogcapi provides implementations of representations for spatial data using encodings
such as:

HTML,

GeoJSON,
* Geography Markup Language (GML), Simple Features Profile, Level 0, and
* Geography Markup Language (GML), Simple Features Profile, Level 2.

The Web API is provided as an Open API 3.0 document implementing the requirements class:
* OpenAPI Specification 3.0.

deegree ogcapi was built on top of the robust API and configuration concept of deegree
webservices. Notable features:

* easy to install: simple deployment in every Java Servlet container

* easy to configure: uses the deegree workspace configuration concept

e connects to several data sources such as files, and databases

 serves a rich HTML output format including a map component based on OpenLayers

https://ogcapi.ogc.org
https://ogcapi.ogc.org
https://www.deegree.org
https://ogcapi.ogc.org/#intro
https://opengeospatial.github.io/e-learning/ogcapi-features/text/basic-index.html
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
https://docs.opengeospatial.org/is/18-058r1/18-058r1.html
https://docs.ogc.org/is/19-079r2/19-079r2.html
https://docs.ogc.org/is/21-065r2/21-065r2.html
https://www.deegree.org
https://www.deegree.org
https://openlayers.org/

 links to metadata in different formats

» supports data types such as arrays and structured objects

* supports a bulk download for datasets as specified by requirements class "INSPIRE-bulk-

download"

2.3. Quick Start

1.

Install the deegree ogcapi webapp on your preferred Java Servlet container (the runtime
environment). See section Installation for more information.

Create the necessary deegree configuration files stored within a deegree workspace with at least
one datasource. Which files are required is described in section Configuration.

Install deegree ogcapi webapp and start the runtime environment. This is described in section
Start the webapp.

Start a browser and open the OpenAPI specification. How to use the Web API document is
explained in section OpenAPI document.

Browse the content using the HTML interface. How to access the data is described in section
Using the HTML interface.

https://github.com/INSPIRE-MIF/gp-ogc-api-features/blob/master/spec/oapif-inspire-download.md#req-bulk-download
https://github.com/INSPIRE-MIF/gp-ogc-api-features/blob/master/spec/oapif-inspire-download.md#req-bulk-download

Chapter 3. Terms and Definitions

For simplicity, this document consistently uses:

* "OGC API" to refer to the family of standards for geospatial Web APIs specified by the OGC.
* "OAPI-F" to refer to the standard OGC API - Features, including Part: 1, 2, and 3.

» "deegree ogcapi" to refer to the implementation of OGC API standards based on deegree core
APL

Furthermore the following terms are used in this document:

3.1. dataset

Is a collection of data. In the context of deegree ogcapi a dataset is the set of feature types provided
by a feature store. It is identified by it’s {datasetId}.

3.2. datasource

Is a source containing data retrieved from a file or a database. In the context of deegree ogcapi a
datasource can be a feature store implementation. Which feature store implementations are
supported is explained in section Feature store configuration.

3.3. feature

Is an abstraction of real world phenomena. In the context of deegree ogcapi it is a spatial entity
stored in a datasource. It is identified by it’s {featureld}.

3.4. feature collection

Is a set of features from a dataset. It is identified by it’s {collectionId}.

3.5. feature store

Is a ressource within the deegree workspace providing access to stored features. In the context of
deegree ogcapi a feature store provides access to datasource such as SHAPE file or a database.

3.6. metadata

Is a description of the dataset. In the context of deegree ogcapi metadata can be linked per dataset.

3.7. WebAPI

An API using an architectural style that is based upon open standards and best practices such as
OpenAPI Specification and it’s implementation Swagger.

https://spec.openapis.org/oas/v3.0.3
https://swagger.io/

3.8. webapp

Is a deployable instance of a web application. In the context of deegree ogcapi it is a Web
application ARchive (WAR) containing all resources that together constitute the deegree ogcapi
application.

3.9. workspace

Is a directory structure containing configuration files. Most configuration files are in XML format.
Read more in Configuration how to configure deegree ogcapi.

Chapter 4. Installation

There are many ways to install deegree ogcapi. This section will describe the various installation
paths available.

4.1. Requirements

deegree ogcapi works on every Java Servlet container implementing the Java Servlet API 6.0 using
an OpenJDK or Oracle JDK 17 or higher. The JRE and Java Servlet container constitute the runtime
environment. The installation of these components must be done prior of this installation.

The server hosting the service should have at least 4 GB of free memory and more than 2 CPU cores
available.

AdoptOpen]DK 17 with Apache Tomcat 10 is the recommended runtime

NOTE .
environment.

4.2. Download

The deegree OGC API webapp is provided as a web application archive (WAR) file and release
versions are available on the deegree OGC API GitHub page.

Choose either the deegree-ogcapi-webapp-postgres.war for PostgreSQL/PostGIS or the deegree-
ogcapi-webapp-oracle.war for Oracle databases. Both webapps contain all required libraries and
feature store implementations to access file-based feature stores (see Feature store configuration
for more information which feature stores are supported). Download the WAR file and store it in
the local file system of the server.

4.3. Deploy the webapp

Move the WAR file to the deployment folder of the runtime environment. For Apache Tomcat the
folder is $CATALINA_HOME/webapps.

Within this document the context path deegree-ogcapi for the deegree ogcapi
NOTE webapp is used. Rename the WAR file to deegree-ogcapi.war to follow this
convention.

Deploying one single webapp per runtime instance is recommended. See FAQ for

NOTE
more information about deployment of deegree ogcapi.

4.4. Start the webapp

To start the webapp the runtime environment needs to be started. For Apache Tomcat use the start
script $CATALINA/bin/startup.sh.

https://adoptopenjdk.net/
https://tomcat.apache.org/download-10.cgi
https://github.com/deegree/deegree-ogcapi/releases

4.5. Stop the webapp

To stop the webapp the runtime environment needs to be stopped. For Apache Tomcat use the start
script $CATALINA/bin/shutdown. sh.

4.6. Uninstallation

To uninstall the webapp:

1. Stop the runtime environment (if it is running).

2. Delete the webapp and the directory in which the deegree ogcapi webapp is installed.

4.7. Docker

Docker images with deegree OGC API are available on Docker Hub. This requires the installation of
Docker on the server. Check the Docker documentation for requirements and installation
instructions. The docker image provides all software components and no additional software
installations are necessary.

Get the docker image with:
docker pull deegree/deegree-ogcapi:latest

To start a Docker container with the name ogcapi on port 8080 run the following command:
docker run --name ogcapi -d -p 8080:8080 deegree/deegree-ogcapi:latest

See the Docker CLI documentation for more information how to connect a container to a network,
mount a volume into the container, or set environment variables.

4.8. Supported Browser
deegree ogcapi has been tested across a wide range of browsers, and operating systems.
The following browsers are supported:

* Mozilla Firefox (80.0+), Google Chrome (85.0+), Microsoft Edge (79.0+)

If you are not using one of the browser above, you should be able to access all resources provided
by deegree ogcapi and use the HTML pages, but it might not display the site as designed, nor
provide you with the best user experience.

Some browsers, particularly earlier versions, either do not or only partly support W3C standards
and JavaScript. These browsers might not display the HTML pages properly. See the list of
supported browsers by the Vue.js framework for more information.

https://hub.docker.com
https://docs.docker.com/get-docker/
https://docs.docker.com/engine/reference/commandline/cli/
https://vuejs.org/

Chapter 5. Configuration

This section describes how to configure the deegree ogcapi webapp.

deegree ogcapi is under development, and new configuration options may be
IMPORTANT added in future releases. For the latest configuration options please consult
the example workspace provided with the release version!

5.1. ogcapi workspace

The deegree workspace is the modular, resource-oriented and extensible configuration concept
used by deegree. The deegree ogcapi workspace is an extension of the standard deegree workspace.
A deegree ogcapi workspace can contain additional configuration files specific to deegree ogcapi.

The directory structure and related files are described by the following example. This example
consists out of two datasets called trees and streets which data is stored within a
PostgreSQL/PostGIS database. The following directory structure shows the files used in this
example:

ogcapi-workspace/

—— config.apikey

—— webapps.properties

L—— ogcapi-workspace
——— datasources

| L—— feature

| F—— streets.xml
| L—— trees.xml
F—— html

F—— htmlview.xml
—— streetsview.xml
F——— treesview.xml
L—— default-style.css
—— jdbe

| L—— postgres-db.xml
—— ogcapi

| F—— datasets.xml

| —— streets.xml

| L—— trees.xml

L—— services
F—— streets_metadata.xml @
L—— trees_metadata.xml

©200%p0 oceoePsoe ©@©0O

® config file with APIKEY required to access REST-API (optional)
@ config file maps deegree ogcapi workspace to deegree ogcapi webapp (mandatory)
® the workspace root directory (mandatory)

@ subdirectory must contain at least one feature store configuration

10

® a feature store with id streets

® a feature store with id trees

@ subdirectory with the configuration of the HTML encoding (optional)
global HTML encoding configuration (optional)

© HTML encoding configuration for the dataset streets (optional)

HTML encoding configuration for the dataset trees (optional)

@ CSS file (optional)

@® configuration file required for database feature stores defining a JDBC connection (optional)
® subdirectory must contain at least one dataset configuration (mandatory)
global dataset configuration (optional)

@® dataset configuration for the dataset streets (mandatory)

dataset configuration for the dataset trees (mandatory)

@ metadata configuration for dataset streets (optional)

metadata configuration for dataset trees (optional)

The path to the deegree ogcapi workspace directory can be set by the
environment variable DEEGREE_WORKSPACE_ROOT. The deegree ogcapi

IMPORTANT workspace may contain service configuration files for deegree webservices
such as WFS and WMS but those services won’t be available with deegree
ogcapi webapp!

More information about deegree’s workspace concept is available in the deegree webservices
handbook. There you will find more information about the feature store configuration and the
JDBC connection configuration.

5.2. Configuration files

The deegree ogcapi workspace adds the following directories to a standard deegree workspace:

» ogcapl/: subdirectory with dataset configuration files (required)

» html/: subdirectory with HTML encoding configuration files (optional)
A deegree ogcapi workspace uses the following directories of a standard deegree workspace:

* datasources/feature/: feature store configuration files
* jdbc/: JDBC connection configuration files
* services/: metadata configuration files

* config.apikey: security configuration file in the root directory of the workspace

The following chapters describe how to setup a deegree ogcapi workspace by the given example.

11

https://download.deegree.org/documentation/current/html/#_the_deegree_workspace
https://download.deegree.org/documentation/current/html/#_the_deegree_workspace
https://download.deegree.org/documentation/current/html/#anchor-configuration-jdbc

5.2.1. Datasets configuration

To provide general information about the datasets provider the following configuration file can be
used:

ogcapi/datasets.xml

<Datasets xmlns="http://www.deegree.org/ogcapi/datasets"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/ogcapi/datasets
https://schemas.deegree.org/ogcapi/1.3/datasets.xsd">
<Title>Datasets Title</Title>
<Description>Datasets Description</Description> @
<Contact>
<Name>Contact Name</Name>
<Url>https://www.deegree.org</Url>
<EMail>info@deegree.org</EMail>
</Contact>
</Datasets>

@ Supports CDATA section with HTML elements
NOTE The file datasets.xml shall be stored in the subdirectory ogcapi/. The file is optional.

This configuration file can contain the following elements:

Option Cardinality Value Description

Title 0..1 String Title

Description 0.1 String Description

Contact 0.1 Complex Contact configuration

The element <Contact/> has the following subelements:

Option Cardinality Value Description

Name 0..1 String Name of the dataset provider

Url 0.1 String URL of the dataset provider

Email 0..1 String Email of the dataset provider
NOTE The content of this file is returned under the resource /datasets.

5.2.2. Dataset configuration

Each dataset is configured in a separate file. The following example shows a minimal configuration
for a dataset called "streets". The filename defines the {datasetId}.

12

ogcapi/streets.xml

<deegreeOAF xmlns="http://www.deegree.org/ogcapi/features"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/ogcapi/features

https://schemas.deegree.org/ogcapi/1.3/features.xsd">

<FeatureStoreld>streets</FeatureStoreld> @

<QueryCRS>http://www.opengis.net/def/crs/06C/1.3/CRS84</QueryCRS> @
<QueryCRS>http://www.opengis.net/def/crs/EPSG/0/4326</QueryCRS> 3
<QueryCRS>http://www.opengis.net/def/crs/EPSG/0/25832</QueryCRS> B

<HtmlViewId>streetview</HtmlViewId> @

</deegree0AF>

@ identifier of the feature store configuration, links to file datasources/feature/streets.xml

@ mandatory CRS, first CRS element must be http://www.opengis.net/def/crs/06C/1.3/CRS84 as
specified in OGC API Features Core specification

® additional CRS, to retrieve data in the given CRS the optional query parameter {crs} needs to be
used, see section Using query parameters for more information

@ identifier of the HTML encoding configuration, links to file html/streetsview.xml

The next example shows a complete configuration for a dataset called "trees" with all options
available.

ogcapi/trees.xml

<deegree0AF xmlns="http://www.deegree.org/ogcapi/features"”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/ogcapi/features

https://schemas.deegree.org/ogcapi/1.3/features.xsd">

<FeatureStoreld>trees</FeatureStoreld> @
<UseExistingGMLSchema>true</UseExistingGMLSchema> @

<QueryCRS>http://www.opengis.net/def/crs/06C/1.3/CRS84</QueryCRS> @
<QueryCRS>http://www.opengis.net/def/crs/EPSG/0/4326</QueryCRS> @

<DateTimeProperties>
<DateTimeProperty> ®
<FeatureTypeName xmlns:app="http://www.deegree.org/app">
app:trees</FeatureTypeName>
<PropertyName xmlns:app="http://www.deegree.org/app">app:seedyear</PropertyName>
</DateTimeProperty>
</DateTimeProperties>

13

http://www.opengis.net/def/crs/OGC/1.3/CRS84

<GeometryProperties> ®
<GeometryProperty skipExportAsWkt="true">
<FeatureTypeName xmlns:app="http://www.deegree.org/app">
app:trees</FeatureTypeName>
<PropertyName xmlns:app="http://deegree.org/app">app:geoml1</PropertyName>
</GeometryProperty>
</GeometryProperties>

<HtmlViewId>treesview</HtmlViewId> @

<Metadata>
<ProviderLicense>
<Name>Provider license</Name>
<Description>no limitations to public access</Description>
</ProviderLicense>
<DatasetlLicense> ©
<Name>Dataset license</Name>
<Url>https://www.govdata.de/d1-de/by-2-0</Url>
</DatasetLicense>
<DatasetCreator>
<Name>Dataset Creator Name</Name>
<Url>http://deegree.org</Url>
<EMail>info@deegree.org</EMail>
</DatasetCreator>
<MetadataURL format="application/xml">http://example.metadata.org?service=CSW
Gamp; request=GetRecordById&version=2.0.2& id=1234</MetadatalRL> @D
<MetadataURL format="text/html">
http://example.metadata.org/path_to_html/1234</MetadatalRL> @
</Metadata>

<ConfigureCollection id="TreeFeature"> ®
<AddLink href="https://inspire.ec.europa.eu/featureconcept/" rel="tag" type=
"text/html" title="Feature concept for trees"/>
</ConfigureCollection>

<ConfiqureCollections>
<AddLink href="https://github.com/INSPIRE-MIF/" rel="describedby" type="text/html"
title="Encoding example"/>
<AddLink href="https://schemas.deegree.org/trees.xsd" rel="describedby" type=
"application/xml" title="GML application schema for trees"/> ®
</ConfigureCollections>

</deegree0AF>

@ identifier of the feature store configuration, links to file datasources/feature/trees.xml

@ activates the resource to serve the GML schema, available for schema-driven SQLFeatureStore
and MemoryFeatureStore. If not provided or set to false the schema file is generated by deegree.

® mandatory CRS, first CRS must be http://www.opengis.net/def/crs/0GC/1.3/CRS84 as specified in
OGC API Features Core specification

14

http://www.opengis.net/def/crs/OGC/1.3/CRS84

@ additional CRS, to retrieve data in the given CRS the optional query parameter {crs} needs to be
used, see section Using query parameters for more information.

® DateTime property defines a property app:seedyear of the feature type app:trees as a datetime
property

® Geometry property defines a geometry property app:geom1 of the feature type app:trees as the
property to export as geometry in GeoJSON. Only required if the featureType contains multiple

geometries. If the attribute skipExportAsWkt is set to false, other geometries are exported as
WKT in Geo]JSON.

@ identifier of the HTML encoding configuration, links to file html/treesview.xml
provider license applicable to the service provider with description element
© dataset license applicable to the dataset using link to license element

dataset provider contact details

@ metadata link in format application/xml for the dataset (optional)

@ metadata link in format text/html for the dataset (optional)

® configure additional links for an individual collection. In the example, an additional link to the
INSPIRE feature concept for the collection is provided (optional) (required by INSPIRE)

configure additional links for all collections. In the example, an additional link to the alternative
encoding description for collections is provided (optional) (recommended by INSPIRE)

@® configure additional links for all collections. In the example, an additional link to the GML
application schema is provided (optional) (used by tools such as QGIS and GDAL)

NOTE The dataset configuration file must be stored in the subdirectory ogcapi/. The file is
mandatory.

This configuration file can contain the following elements:

Option Cardinality Value Description

FeatureStoreld 0.n String Identifier of a feature store, see
Feature store configuration which
implementations are supported. This
identifier also defines the
{collectionld}

QueryCRS 0.n String The CRS codes supported, CRS84 must
be provided as the first element

DateTimeProperties 0..1 Complex Configuration of date and time
properties, see parameter datetime in
the OGC API specification for more
information

HtmlViewId 0..1 String Identifier of the HTML encoding
configuration, see HTML encoding
configuration for more information

15

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_parameter_datetime
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_parameter_datetime

Option Cardinality Value Description

Metadata 0.1 Complex Configuration of the dataset metadata
provided on the dataset’s landing page

ConfigureCollection 0..1 Complex Custom configuration for an
individual collection

ConfigureCollections 0.1 Complex Custom configuration for all
collections

The element <DateTimeProperties/> can contain multiple elements of <DateTimeProperty/> which has
the following subelements:

Option Cardinality Value Description
FeatureTypeName 0.1 String QName of the feature type
PropertyName 0..1 String QName of the property

The element <Metadata/> has the following subelements:

Option Cardinality Value Description

ProviderLicense 0..1 Complex License of the dataset provider
DatasetLicense 0..1 Complex License of the dataset

DatasetCreator 0..1 Complex Contact details of the dataset creator
MetadataURL 0.n URL URL of the metadata record describing

the dataset, use the attribute format to
link HTML or XML representation. Use
this link to a metadata record when
you have a metadata record
describing all containing feature
collections. Otherwise use the element
<Dataset> as described in the next
chapter Metadata configuration.

The element <ConfigureCollection/> has the following subelement:

Option Cardinality Value Description

AddLink 0..1 Complex URL of additional link
The element <ConfigureCollections/> has the following subelement:

Option Cardinality Value Description

AddLink 0..1 Complex URL of additional link
The elements <ProviderLicense/> and <Datasetlicense/> can have either a <Name/> and

<Description/> element or a <Name/> and <URL/> element. The <URL/> can have an optional attribute
format specifying the media type such as application/xml (default is text/html). Same applies to the

16

element <MetadataURL/>.

The <AddLink/> elements in <ConfigureCollection/> and <ConfigureCollections/> have href, rel, type
and title parameters.

See the following section Metadata configuration for more configuration options for metadata.

The content of this file is returned under the resource /datasets/{datasetid}. This
NOTE resource per dataset is called landing page. Furthermore the content of this file is
provided unter the resource /datasets/{datasetld}/api.

5.2.3. Metadata configuration

The deegree service metadata configuration can be defined for each dataset. Use a file name ending
with {datasetld} metadata.xml to define the service metadata per dataset. Use the dataset identifier
{datasetld} as a prefix. For example if you have a dataset configured in streets.xml the related
metadata file has the file name streets metadata.xml.

The following excerpt of the streets_metadata.xml shows which options are available:

services/streets_metadata.xml

<deegreeServicesMetadata xmlns="http://www.deegree.org/services/metadata"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/metadata

https://schemas.deegree.org/3.5/services/metadata/metadata.xsd">

<Serviceldentification> ®
<Title>deegree 0GC API - Features</Title>
<Abstract>Streets of the city of Hamburg</Abstract> @
</Serviceldentification>

<DatasetMetadata>
<MetadataUrlTemplate>http://example.metadata.org/services/csw?service=CSW
Gamp; request=GetRecordById&version=2.0.2& id=§{metadataSetId}</Metadatalr1Templ
ate> @
<MetadataUr1Template format="text/html"
>http://example.metadata.org/csw/htmlrepaesentation/${metadataSetId}</MetadatalriTempl
ate> @
<Dataset> ®
<Name xmlns:app="http://www.deegree.org/app">app:streets</Name> ®
<Title>Streets</Title> @
<Abstract>Streets of the city of Hamburg</Abstract>
<MetadataSetId>beefcafe-beef-cafe-beef-cafebeefcaf</MetadataSetId>
</Dataset>
</DatasetMetadata>

</deegreeServicesMetadata>

@ information about the service, in the context of ogcapi it is used per dataset and is shown on the

17

landing page
@ supports CDATA section with HTML elements

® service metadata link, in the context of ogcapi this link is used in the collection view link of the
metadata

@ service metadata link in format text/html, in the context of ogcapi this link is used in the
collection view linking to the HTML representation of the metadata.

® Use this element when you have a metadata record for the defined feature collection, otherwise
define the link to the metadata record on the dataset level as described in chapter Dataset
configuration for the element <MetadataURL/>.

® feature collection name which links to the feature type configured, here the {collectionId}.

@ title of the feature collection, used in HTML encoding instead of the {collectionId}

The file streets_metadata.xml must be stored in the subdirectory services/. The file is

NOTE
mandatory.

A detailed documentation of the deegree service metadata configuration is described in section
"Metadata" of the deegree webservices handbook.

The content of this file is returned under the resources /datasets/{datasetld},
NOTE /datasets/{datasetld}/collections and /datasets/{datasetId}/collections/{collectionld}
providing information about metadata.

5.2.4. Feature store configuration

Currently, deegree ogcapi supports the following feature stores:

SQLFeatureStore - retrieves data from a database supporting an extended mapping

SimpleSQLFeatureStore - retrieves data from a database using a single table mapping

MemoryFeatureStore - retrieves data from a file in GML file format

ShapeFeatureStore - retrieves data from a file in SHAPE file format (storage CRS is required when
using this FeatureStore)

The Storage CRS defined in the feature store configuration is used to return the Content-Crs HTTP
header in each response.

The supported databases for SQLFeatureStore and SimpleSQLFeatureStore are:

e Oracle database

* PostgreSQL/PostGIS database.

A detailed documentation of the feature store configuration is described in section "Feature Stores"
of the deegree webservices handbook.

The {featureld} is defined by the feature store configuration. Use the element

NOTE
<FIDMapping/> to define the mapping of this attribute.

18

https://download.deegree.org/documentation/current/html/#anchor-configuration-service-metadata
https://download.deegree.org/documentation/current/html/#anchor-configuration-featurestore

Using schema- or table-driven FeatureStore configurations

When using a GML application schema in the feature store configuration the schema is used in the
OpenAPI document for XML and JSON encoding to describe the data types (schema-driven mode). If
no application schema is provided the data type description is derived from the feature store

mapping (table-driven mode).

The following table shows the supported features depending on the feature store configuration.

Table-driven Schema-

driven
GML supported supported
encoding
JSON supported supported
encoding
HTML limited limited
encoding

GML schema provided provided

JSON schema without GML including
properties GML
properties

Description

fully supports GML 3.2 and all deegree mappings

derived from GML encoding without feature
references and complex types

derived from JSON encoding, only primitive
properties and lists of primitives

linked in OpenAPI document, available at
collections/{collectionId}/appschema as XSD only

data type definition is provided in OpenAPI
document

More information about table-driven and schema-driven mode is provided in section "Mapping
GML application schemas" of the deegree webservices handbook.

5.2.5. HTML encoding configuration

To configure the HTML encoding a configuration file can be used. The following example contains

the configuration for the dataset trees.

19

https://download.deegree.org/documentation/current/html/#_mapping_gml_application_schemas

html/treesview.xml

<HtmlView xmlns="http://www.deegree.org/ogcapi/htmlview"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/ogcapi/htmlview

https://schemas.deegree.org/ogcapi/1.3/htmlview.xsd">

<CssFile>../html/1gv.css</CssFile> @
<LegalNoticeUr1>https://www.hamburg.de/legalNotice/</LegalNoticelrl> @
<PrivacyPolicyUr1>https://www.hamburg.de/datenschutz/</PrivacyPolicyUr1> @
<DocumentationUr1>https://www.hamburg.de/</DocumentationUrl> @
<Map> ®
<WMSUr1 version="1.3.0">
https://geodienste.hamburg.de/HH_WMS_Cache_Stadtplan</WMSUrl> ®
<WMSLayers>stadtplan</WMSLayers> @
<CrsProj4Definition code="EPSG:25832">+proj=utm +zone=32 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs</CrsProj4Definition> @
<Source><![CDATA[O <a href="https://www.hamburg.de/"
target="_new">Datenquelle]]|></Source> ©
</Map>

</HtmlView>

@ CSS file used for all HTML views (optional)

@ link to page containing the publishing, copyright, and legal information (optional)
® link to page containing the privacy policy (optional)

@ link to page containing the documentation (optional)

® configuration of the base map (optional)

® URL of WMS used for the base map (required)

@ layer name served by the WMS used for the base map (required)

CRS configuration of the base map

© adds information about the source of the base map to the map element. The text element can
contain HTML packed in a CDATA section (optional)

The file treesview.xml must be stored in the subdirectory html/. To define a global

NOTE
configuration the file name must be htmlview.xml. The file is optional.

This configuration file can contain the following elements:

Option Cardinality Value Description

CssFile 0.1 URI relative path to a CSS file

LegalNoticeUrl 0.1 URL URL to external page containing the
legal notice used for link in footer
"Legal Notice"

20

Option Cardinality Value Description

PrivacyPolicyUrl 0.1 URL URL to an external page containing
the privacy policy for link in footer
"Privacy Policy"

DocumentationUrl 0.1 URL URL to an external page containing

the documentation, if not set link in
footer "Help" refers to this

documentation
Map 0..1 Complex Configuration for the base map
The element <Map/> has the following subelements:
Option Cardinality Value Description
WMSUrl 1 URL WMS service endpoint URL, default:

http://sg.geodatenzentrum.de/
wms_dtk250. Use the attribute version
to specify the WMS version

WMSLayers 1 String Name of the layer, default: dtk250

—

CrsProj4Definition String Use the attribute code to set the EPSG
code, and the value element for the
PROJ definition as provided by

http://epsg.io.

Additional information about the option (ssFile: The following elements can be configured using a
CSS file: the background color of header and footer, images in header and footer, links to help, legal
notice, and privacy policy.

The content of this file is returned under the resources /datasets/{datasetld} for

NOTE)
HTML encoding only.

5.3. deegree config REST-API

deegree ogcapi provides a REST-API for configuration purposes. As in deegree webservices a client
can use the REST interface to manage the configuration. The following operations are supported:

21

http://sg.geodatenzentrum.de/wms_dtk250
http://sg.geodatenzentrum.de/wms_dtk250
https://proj.org
http://epsg.io
https://download.deegree.org/documentation/current/html/#anchor-configuration-restapi

[HTTP METHOD] [RESOURCE] - [DESCRIPTION]

GET /config/download[/path] - download currently running workspace or file in
workspace

GET /config/restart - restart currently running workspace

GET /config/restart[/path] - restarts all resources connected to the specified one
GET /config/update - update currently running workspace, rescan config files and
update resources

GET /config/update/bboxcache[?featureStoreld=] - recalculates the bounding boxes of
all feature stores of the currently running workspace, with the parameter
'featureStoreId' a comma separated list of feature stores to update can be passed
GET /config/list[/path] - list currently running workspace or directory in workspace
GET /config/validate[/path] - validate currently running workspace or file in
workspace

PUT /config/upload/path/file - upload file into current workspace

DELETE /config/delete[/path] - delete currently running workspace or file in workspace

The REST-API is enabled by default. To protect this interface from unauthorized use, it is
automatically secured with a so-called API key. Each HTTP request requires that the API key
contained in the file config.apikey is transferred.

A detailed documentation of the REST-API interface and how access is configured is described in
section "deegree REST interface" of the deegree webservices handbook.

5.4. Allow access to OpenAPI document from all
origins

In case you want to avoid any issues when using the OpenAPI document from other locations due
to CORS, you can enable allowing all origins specifically for accessing the OpenAPI document. To
enable this set the system property deegree.oaf.openapi.cors.allow_all to true.

5.5. Logging configuration

The deegree ogcapi is using the Logback Project for logging. By default, deegree ogcapi uses the
deegree autoconfiguration submodule. This module can log to the console and to files, adjust log
patterns, and define log levels for various components of deegree ogcapi and its dependencies. If
more advanced or customized logging is required, you can supply a Logback XML configuration
file, which disables autoconfiguration and enables even complex logging setups.

Place your logback.xml file in the classpath of the deegree ogcapi application to

TIP
provide your custom logging configuration.

Further details on configuring both the autoconfiguration module and a file-based Logback setup
can be found in the documentation for deegree webservices.

22

https://download.deegree.org/documentation/current/html/#anchor-configuration-restapi
https://logback.qos.ch/
https://download.deegree.org/documentation/current/html/#anchor-logging-configuration

Chapter 6. Usage

This section describes how to access the data in the different encodings and how to use the HTML
encoding to browse the data.

The main entry point for deegree ogcapi is provided under the resource path /datasets. Given that
the deegree ogcapi webapp is deployed under the context path /deegree-ogcapi the resulting
example URL for a local server running on port 8080 is: http://localhost:8080/deegree-ogcapi/
datasets

6.1. Datasets overview

This resource provides an overview of all datasets served by deegree ogcapi:

Resource Path HTTP Supported Description
method Encodings
Datasets overview / GET text/html, The resource provides an
application/json gyerview of all datasets
available
Landing page per /{datasetId} GET text/html, The API landing page per
dataset application/json dataset (see next section for

further information)

NOTE The context for the listed resource is /datasets. This resource is not defined by the
OGC API - Features standard and is an implementation specific resource.
All resources are available in different encodings. To request a resource in a different encoding the
client shall use either the HTTP Accept header or the query parameter f to retrieve the data in the
requested media type. To retrieve the supported media types per resource use the OpenAPI
document available under '/api'.

6.2. Landing page per dataset

Besides the resources listed above for each dataset all resources defined by the OGC API - Features
standard are supported. The configuration examples described in this document would result to the
following addresses for each dataset. The landing page for the dataset trees would be served under
the address http://localhost:8080/deegree-ogcapi/datasets/trees and the landing page for the dataset
streets would be served under the address http://localhost:8080/deegree-ogcapi/datasets/streets.

The following table show the resources available per dataset:

23

http://localhost:8080/deegree-ogcapi/datasets
http://localhost:8080/deegree-ogcapi/datasets
http://localhost:8080/deegree-ogcapi/datasets/trees
http://localhost:8080/deegree-ogcapi/datasets/streets

Resource Path HTTP Supported Description
method Encodings
Landing page / GET text/html, Landing page is
application/json the top-level
resource, which
serves as an entry
point per dataset
OpenAPI /api GET text/html, API specification
application/json, document
application/yaml provides metadata
about the API
itself
Conformance /conformance GET text/html, Declaration of
declaration application/json conformance
classes presents
information about
the functionality
that is
implemented by
the server
Feature collections /collections GET text/html, Feature collections
application/json, overview
application/xml
Feature collection /collections/{collectionId} GET text/html, Feature collection
application/json, identified by
application/xml {collectionId}
Features /collections/{collectionld} GET text/html, List of features
/1tems application/json,
application/xml
Feature /collections/{collectionld} GET text/html, Feature identified
/items/{featureld} application/json, by {featureld}
application/xml
Provider License /license/provider GET text/html, Provider license
application/json
Dataset License /license/dataset GET text/html, Dataset license
application/json

The context for the listed resource is datasets/{datasetld}. The OGC API - Features

NOTE

standard defines all resources from this base resource.

6.3. OpenAPI document

The OpenAPI page is available under the context /api or /openapi. The use of /api on the server is
optional and the API definition may be hosted on completely separate server. If you have deployed

24

the deegree ogcapi webapp under the context of deegree-ogcapi and you have a dataset configured
with the name streets the resulting request path would be /deegree-ogcapi/datasets/streets/api.

The interface is grouped in the sections:

 Capabilities - capabilities of the datasets

e Data - access to features

Collections - access to feature collections

¢ Schemas - access to schemas

@ Swagger hitp:/llocalhost:8081/deegree-services-oaf/datasets/trees/api
prnaty SMARTEEAR

deegree OGC API - Features ®

hitp:/flocalhost:8081/deegree-services-oaf/datasets/rees/apl
Trees of the city of Hamburg

Landesbetrieb Geoinformation und Vermessung - Website

Servers

[/deegree-serv /trees v
Capabilities A~
GET /license/provider License v
GET /conformance supported conformance classes N
GET /license/dataset License v
GET /api api documentation v
133 / landing page N

Figure 1: Swagger start page

For each resource in the data section a schema description is provided derived from
the underlying feature store configuration. See section Feature store configuration
for more information which are supported. Schema and example data may vary
depending on the selected encoding and the underlying configuration.

NOTE

For all resources listed on the first three sections the following description explains how to send a
request and retrieve the response in a given encoding.

6.4. Making a request

Use the generic OpenAPI specification HTML page to make a request.
Example request: Get Landing page in json encoding.

1. Click on the button "GET" next to the resource /

25

2. Click on the button "Try it out”
3. Select the media type application/json from the selection list below "Responses”

4, Click on the button "Execute"

m /collections/trees/items retri of collection { ionld} A

Retrieves the features of the collection with the id {collectionld}

Name Description
limit
integer(5int32) Limits the number of items presented in the response document. Ignored if bulk is true.
(query)

10
offset
integer ($int32) The start index of the items presented in the response document. Ignored if bulk is true.
(query)

0
bulk
boolean The bulk parameter is used to download all items of the collection. LIMIT and OFFSET are ignored if bulk is true.
(query)

[taise v |

bbox
T The bounding boxes that describe the spatial extent of the dataset [minx, miny, maxx, maxy]. Example:

'567190,5934330,567200,5934360'

Add number item
bbox-crs

e The coordinate reference system of the value of the bbox parameter. Example: 'EPSG:25832' Default:
http:/iwww.opengis.net/def/crs/OGC/1.3/CRS84

(query)

(query)

Figure 2: Swagger send request

The page should display the server response in the selected encoding and the HTTP status code. In
addition the HTTP response header information is displayed.

26

Responses

Curl

curl =X "GET" \
*http://localhost:8881/deegree-services-oaf/datasets/trees/collections/trees/items?limit=10&offset=B&bulk=false’ \

-H 'accept: application/geo+json’
Request URL

http://localhost:8081/deegree-services-oaf/datasets/trees/collections/trees/items?1imit=10soffset=0abulk=false

Server response

Code Details

200 Response body
{
“type”: “FeatureCollection”,
“features®: [

“type®: “Feature”,
=id": "APP_TREES_100055201",
“geometry”: {
“type": “Point”,
“coordinates™: [

i

1,
"properties”: {
"gattung_latein®: "Quercus”,
"sorte_latein": "Quercus robur 'Fastigiata'”,
"bezirk™: "Hamburg-Mitte",
"pflanzjahr_portal®:
"stadtteil™: "St.Georg”,

Figure 3: Swagger response

6.5. Accessing a response

To access a response in the requested encoding directly use either the given command line tool curl
with the given options as displayed in the OpenAPI page when sending a request described in
section Making a request. Or use a browser and additional plugins to send the HTTP request
directly. Use the HTTP Accept header or the query parameter f to define the expected response
format.

Media type Query parameter Accept header Description
application/json ?f=json application/json, JSON/GeoJSON
application/geo+json encoding
application/xml ?f=xml application/xml, XML/GML
application/gml+xml encoding
text/html - text/html HTML encoding

6.6. Accessing data in JSON/Geo]JSON format

To retrieve a resource in application/json encoding use the request parameter f=json. To retrieve
the landing page of the dataset streets in application/json encoding use the following request
datasets/streets/?f=json. Example URL: http://localhost:8080/deegree-ogcapi/datasets/streets/?f=json

See section Using query parameters for more information about other supported query parameters.

27

http://localhost:8080/deegree-ogcapi/datasets/streets/?f=json

6.7. Accessing data in XML/GML format

To retrieve a resource in application/xml encoding use the request parameter f=xml. To retrieve the
landing page of the dataset streets in application/xml encoding use the following request
datasets/streets/?f=xml. Example URL: http://localhost:8080/deegree-ogcapi/datasets/streets/?f=xml

See section Using query parameters for more information about supported other query parameters.

The corresponding GML schema file is provided under the resource of each Feature collection
datasets/{datasetld}/collections/{collectionld}/appschema. Example URL: https://localhost:8080/
deegree-ogcapi/datasets/streets/collections/streets/appschema

6.8. Using the HTML interface

The HTML interface provides easy access to the spatial data using a browser (check the list of
Supported Browser). It requires no additional client or browser plugin to browse the data. The
browser sends by default the HTTP header Accept with the value text/html and therefore each
resource is returned in HTML encoding.

To browse the data open the browser of your choice and start at the datasets overview available at
datasets/. Example URL: http://localhost:8080/deegree-ogcapi/datasets

JSON HTML

Example Datasets

Example Datasets

deegree OGC API - Features
Links Landing Page as HTML

deegree OGC API - Features
Links Landing Page as HTML

Contact

Dataset Provider Name (E-Mail)

Figure 4: Datasets overview in HTML encoding

Navigate to the landing page of the dataset trees by clicking on the link "Landing page as HTML".

http://localhost:8080/deegree-ogcapi/datasets/streets/?f=xml
https://localhost:8080/deegree-ogcapi/datasets/streets/collections/streets/appschema
https://localhost:8080/deegree-ogcapi/datasets/streets/collections/streets/appschema
http://localhost:8080/deegree-ogcapi/datasets

Datasets | trees JSON XML HTML

deegree OGC API - Features

Trees of the city of Hamburg

Collections Supported Feature Collections as HTML
API Definition API definition as HTML

Conformance Classes OGC API conformance classes as HTML
Metadata Metadata describing this dataset

Figure 5: Landing page in HTML encoding
The landing page provides links to all resources of a dataset.

When navigating to the feature collections and feature collection resource links to access the
referenced metadata and bulk download in GeoJson and GML encoding are provided.

Datasets | trees JSON XML HTML

Collections

Trees
Trees of the city of Hamburg

Links Collection as HTML
Features as HTML
Download all features as GeoJSON
Download all features as GML
Metadata describing this Collection

Figure 6: Feature collections page in HTML encoding

29

Datasets

trees /| Collections JSON XML
Trees of the city of Hamburg
Links Features as HTML
Download all features as GeoJSON
Download all features as GML
Metadata describing this Collection
i 3 i < Bad-Oldesloe / \Grat:
spatal en Wi P psned) s o ("
ckstad =)
It hafan ~_VElmshorn \ i J
L '\\ / Qﬂlgckhornr\!'/*j Berkenthlna “E
A Norderstedt Stejpbiutg Ratzeb
ochtersen™ '.}I\Ueterse.n_ X ¥ Amme}rsbek éhrensburg atzebucg
H-a;.fs = ‘\Moorrege? |- Rinneberg 2 Ptioisdorf v -
= Himmelpforten .~ Halstenbek Trittau Breiten-_ s w?afl;sta.
& \ felde o
ﬂorﬂe Zarrent

=~ Harsefeld /Bu xtehud'ég"

Apense
O.ﬂkhle rstedt Rd

selsingen

Heeslingen

. Q“-““x A TN

Treradr

Temnoral

Figure 7: Feature collection page in HTML encoding

Datasets | trees /| Collections | Trees

Trees

Trees of the city of Hamburg

«<n234...>» iy Eg
E SURS Rothenbaum.
\ g) 0
APP_TREES_100055201 a:Nord 23 E QRSN LI
' RN
_—#Hamburg-Ster n':schanz'g Q
Attribute Value i 3
enstraBeltagy' g I Hambuldp}mmlor
gattung_latein Quercus =) =1 N5 7 0y
+. 2 o m.
N o = Y
sorte_latein Querf:L:ls robur Tt : ; " .
'Fastigiata' Itstadt ¥ StiPauli- iV
)) Ap=e 'm *al o
bezirk Hamburg-Mitte =~ el Toine JJQ_\\?:):-

. burg Reeperbah
pflanzjahr_portal 2003 LEeEE
at

stadtteil St.Georg

stand_bearbeitung 2018-01-01

_ 5] &
gattung_deutsch Eiche) /
strasse Pulverteich Ste“'”weﬁd\ei’ \ w
pflanzjahr 2003-01-01 o L RIE BT

Figure 8: Feature items page in HTML encoding

30

in der

Hamburg Sta'd} l':nau_sbrii'c ke

Hamburg Landungshbrl

/ Rlarkada®

GeoJSON GML

_-Kfm H-a
o Arachrnnlk

A

HTML

HTML

Datasets / trees /| Collections / Trees |/ Features

APP_TREES_100055201

Value n

Attribute
gattung_latein Quercus

sorte_latein Quercus robur

'Fastigiata’
bezirk Hamburg-Mitte 8
pflanzjahr_portal 2003
stadtteil St.Georg
stand_bearbeitung 2018-01-01
gattung_deutsch Eiche
strasse Pulverteich
pflanzjahr 2003-01-01

Figure 8: Feature item page in HTML encoding

f"l/ 1
S
2

/(R %

6.9. Using query parameters

The following query parameters are supported when using HTTP GET:

Query parameter Value type

name

crs String

bbox Comma separated floating
point values

bbox-crs String

f String

limit integer

offset integer

bulk boolean

Example value

EPSG:4326

567190,5934330,

567200,5934360

EPSG:4326

json

10

true

GeoJSON GML HTML

Description

EPSG code defines the CRS of
the returned data

List of comma separated
floating point values
defining a bounding box

EPSG code defines the CRS of
the coordinates of the bbox
parameter

Requested encoding of a
given resource, can be json,
html or gml

Limit the numbers of items
per page
Start index of items

Applicable for features
resource only, can be
combined with parameter f

31

Query parameter Value type Example value
name

filter String S_INTERSECTS({sp
atialQueryable},{s
patiallnstance}),
T_AFTER({tempor
alQueryable},{tem

porallnstance})
filter-lang String cql2-text
filter-crs String EPSG:4326

Description

Filter limited to S_INTERSECTS
with first operand
{spatialQueryable} defining
the property name and the
second operand
{spatiallnstance} the basic
spatial data type point or
bounding box. Filter limited
to T_AFTER with first operand
{temporalQueryable} defining
the property name and the
second operand
{temporallnstance} with a
date DATE('2026-01-01") or
datetime TIMESTAMP('2025-
04-14T708:59:307"). Available
{temporalQueryable} are
listed as additionale
queryable in the OpenAPI
document document (type
date or date-time), see note
below.

Defines the filtering
language, indicates that the
value of the filter
parameter is the text
encoding of CQL2, can be

combined with parameter
filter

Allows clients to assert
which CRS is being used to
encode geometric values in
a filter expression, can be

combined with parameter
filter

Check the OpenAPI document on which resources the listed query parameters are
NOTE supported. Additional query parameters may be available depending on the

resource.

32

Chapter 7. Help

This section show how to get help in case of problems.

7.1. Known Issues

* Mixing legacy service configuration with ogcapi configuration is currently not supported by
deegree ogcapi webapp. See the FAQ how to serve your data with deegree webservices and
deegree ogcapi from the same workspace configuration.

 Startup time of deegree ogcapi webapp may increase noticeably when the deegree workspace
contains many resources (e.g. more than 100 files).

» Using the browser’s navigation buttons when using the HTML view may result in empty pages
or the switch to JSON encoding. Affected browsers: Google Chrome, Chromium. You can avoid
this by enabling the Vary HTTP response header in your HTTP server configuration. Check the
HTTP server documentation how to configure this.

* The implementation supports only parts of OGC API - Features - Part 3. The implementation is

non

not fully supporting the following requirements classes: "Queryables”, "Queryables as Query
Parameters", "Filter" with "CQL2 Functions", and "Features Filter".

7.2. Support

Use the deegree support options (mailing lists, commercial support) to get help.

7.3. FAQ

1. How to update the bbox_cache.properties?

Use REST-API operation /config/update/bboxcache to recalculate the bounding boxes of the
feature stores. See section deegree config REST-API for more information how to use the REST-
APL

2. How to migrate an existing deegree workspace?
Given that an existing deegree workspace contains at least one feature store the following steps
need to be done to provide the data via deegree ogcapi webapp:

* Add a dataset configuration file in subdirectory ogcapi/, e.g. streets.xml as described in the
example workspace in chapter Dataset configuration.

* Configure the HTML encoding by adding a file in subdirectory html/ (optional), e.g.
streetsview.xml as described in the example workspace in chapter HTML encoding
configuration.

* Deploy the deegree ogcapi webapp as described in chapter Deploy the webapp.
* Add mapping entry to webapps.properties file to select the deegree ogcapi workspace for the

deegree ogcapi webapp.

3. How to use the same workspace with deegree ogcapi and deegree webservices?

Deploy both webapps for deegree ogcapi and deegree webservices configured to use the same

33

34

workspace called ogcapi-workspace. Use the file webapps.properties to configure this. Keep in
mind that deegree ogcapi will provide the OGC API - Features and deegree webservices will
provide only the legacy service implementations. You may see warnings in the logging messages
for both instances that configuration files have been ignored.

How to deploy multiple instances of the deegree ogcapi webapp?

Multiple deployments of the webapp are possible. Since each instance of the runtime
environment can host one or more webapp. For every deployed webapp there must be a
deegree workspace available with the name ogcapi-workspace. 1t is possible that multiple
instances of the webapp can share one single instance of a deegree workspace, for example a
setup serving the same data by multiple instances in a load-balancing scenario. To serve
different data configured in different deegree workspace’s you need to run multiple instances
of the runtime environment. Use the environment variable DEEGREE_WORKSPACE _ROOT to set the
path to the deegree workspace directory. Read further in section Configuration about the
deegree workspace and configuration files.

How to configure server side caching for HTML view?

Server side caching must be disabled to access the HTML view of deegree OGC API This is
because the HTML view is generated from the JSON resource on-the-fly. Otherwise a client may
show outdated content from the cache which was generated by a different client request. When
requesting any resource of deegree OGC API the HTTP request header Cache-Control: no-cache
shall be set to prevent caching. This also applies to proxy servers between the actual client and
the deegree OGC API instance.

	deegree OGC API - Features Implementation
	Table of Contents
	Chapter 1. Preambel
	Chapter 2. Introduction
	2.1. OGC API family
	2.2. Features
	2.3. Quick Start

	Chapter 3. Terms and Definitions
	3.1. dataset
	3.2. datasource
	3.3. feature
	3.4. feature collection
	3.5. feature store
	3.6. metadata
	3.7. WebAPI
	3.8. webapp
	3.9. workspace

	Chapter 4. Installation
	4.1. Requirements
	4.2. Download
	4.3. Deploy the webapp
	4.4. Start the webapp
	4.5. Stop the webapp
	4.6. Uninstallation
	4.7. Docker
	4.8. Supported Browser

	Chapter 5. Configuration
	5.1. ogcapi workspace
	5.2. Configuration files
	5.2.1. Datasets configuration
	5.2.2. Dataset configuration
	5.2.3. Metadata configuration
	5.2.4. Feature store configuration
	Using schema- or table-driven FeatureStore configurations

	5.2.5. HTML encoding configuration

	5.3. deegree config REST-API
	5.4. Allow access to OpenAPI document from all origins
	5.5. Logging configuration

	Chapter 6. Usage
	6.1. Datasets overview
	6.2. Landing page per dataset
	6.3. OpenAPI document
	6.4. Making a request
	6.5. Accessing a response
	6.6. Accessing data in JSON/GeoJSON format
	6.7. Accessing data in XML/GML format
	6.8. Using the HTML interface
	6.9. Using query parameters

	Chapter 7. Help
	7.1. Known Issues
	7.2. Support
	7.3. FAQ

