deegree OSGEO

Pr0]ect

deegree Webservices

Version 3.4.27, 2022-03-17



Table of Contents

1. Introduction
1.1. Characteristics of deegree WFS
1.2. Characteristics of deegree WMS
1.3. Characteristics of deegree WMTS
1.4. Characteristics of deegree CSW
1.5. Characteristics of deegree WPS
2. Installation
2.1. System requirements
2.2. Downloading
2.3. Starting and stopping
2.4. Securing deegree
2.4.1. Software Versions
2.4.2. Encryption
2.4.3. Securing deegree console and REST API
2.5. Logging configuration
3. Getting started
3.1. Accessing deegree’s service console
3.1.1. Downloading and activating example workspaces
3.2. Example workspace 1: INSPIRE Network Services
3.3. Example workspace 2: Utah Webmapping Services
3.4. Example workspace 3: An ISO Catalogue Service setup
3.5. Example workspace 4: Web Processing Service demo
4. Configuration basics
4.1. The deegree workspace
4.2. Dependencies of the deegree configuration files
4.3. Location of the deegree workspace directory
4.3.1. Linux/Solaris/Mac OS X
4.3.2. Windows
4.3.3. Global configuration files and the active workspace
4.4. Structure of the deegree workspace directory
4.4.1. Workspace files and resources
4.4.2. Resource identifiers and dependencies
4.5. Using the service console for managing resources
4.5.1. Displaying configured resources
4.5.2. Deactivating a resource
4.5.3. Editing a resource
4.5.4. Deleting a resource

4.5.5. Creating a new resource

10
10
11
11
13
13
13
13
14
15
15
15
15
18
18
19
20
23
26
31
35
35
36
37
37
38
38
39
40
40
41
42
42
43
45
45



4.5.6. Displaying error messages
4.5.7. Resource type specific actions
4.6. Best practices for creating workspaces
4.6.1. Start from example or from scratch
4.6.2. Find out which resources you need
4.6.3. Use a validating XML editor
4.6.4. Check the resource status and error messages
5. Web services
5.1. Web Feature Service (WFS)
5.1.1. Minimal example
5.1.2. More complex example
5.1.3. Configuration overview
5.1.4. General options
5.1.5. Transactions
5.1.6. SupportedRequests
5.1.7. Adapting GML output formats
Basic GML format options
GetFeature response settings
Coordinate formatters
Geometry linearization
5.1.8. Adding custom output formats
5.1.9. Stored queries
5.1.10. Extended capabilities
5.2. Web Map Service (WMS)
5.2.1. Aword on layers and themes
5.2.2. Configuration overview
5.2.3. Basic options
5.2.4. SupportedRequests
5.2.5. Service content configuration
5.2.6. Custom capabilities formats
5.2.7. Custom feature info formats
5.2.8. FeatureInfo templating format
Introduction/Example
Templating special constructs
5.2.9. Custom image output formats
Custom format provider class
5.2.10. Custom exception formats
5.2.11. Extended capabilities
5.2.12. Vendor specific parameters
5.2.13. XML request encoding
GetCapabilities

46
48
48
48
49
50
50
52
52
53
53
54
35
56
57
39
61
61
62
62
64
65
66
66
67
67
68
69
71
72
72
73
73
75
76
77
78
78
79
79
80



GetMap 80

GetFeaturelnfo 81
5.2.14. SOAP request encoding 84
Capabilities 84

5.3. Web Map Tile Service (WMTS) 86
5.3.1. Minimal example 86
5.3.2. More complex example 87
5.3.3. Configuration overview 87
5.3.4. A complete WMTS configuration example, based on a GeoTIFFTileStore 88
5.3.5. Optimizing deegree WMTS 90
5.3.6. Supported steps by deegree services console 91
5.4. Catalogue Service for the Web (CSW) 91
5.4.1. Minimal example 92
5.4.2. Configuration overview 92
5.4.3. Extended Functionality 93
5.5. Web Processing Service (WPS) 93
5.5.1. Minimal example 94
5.5.2. Complex example 94
5.5.3. Configuration overview 95
5.5.4. DefaultExecutionManager section 96
5.6. Metadata 96
5.6.1. Service identification 98
5.6.2. Service provider 99
5.6.3. Dataset metadata 99
5.6.4. Extended capabilities 101
5.7. Service controller 101
5.7.1. Reported URLs 102
5.7.2. Request timeouts 102

6. Feature stores 104
6.1. Features, feature types and application schemas 104
6.1.1. Simple vs. rich features and feature types 104
6.1.2. Application schemas 106
6.2. Shape feature store 106
6.2.1. Minimal configuration example 107
6.2.2. More complex configuration example 107
6.2.3. Configuration options 108
6.3. Memory feature store 109
6.3.1. Minimal configuration example 109
6.3.2. More complex configuration example 110
6.3.3. Configuration options 110
6.4. Simple SQL feature store 111



6.4.1. Minimal configuration example
6.4.2. More complex configuration example
6.4.3. Configuration options
6.5. SQL feature store
6.5.1. Minimal configuration example
6.5.2. More complex configuration example
6.5.3. Overview of configuration options
6.5.4. Mapping tables to simple feature types
Customizing the feature type name
Customizing the feature id
Customizing the mapping between columns and properties
6.5.5. Mapping GML application schemas
Recommended workflow
Mapping rich feature types
Mapping strategies for xlink:href attributes
Changing the table context
Handling of NULL values
BLOB mapping
6.5.6. Transactions and feature id generation
Auto id generator
UUID generator
Sequence id generator
6.5.7. Evaluation of query filters
6.5.8. Auto-generating a mapping configuration and tables
7. Tile stores
7.1. Tile stores, tile data sets and tile matrix sets
7.1.1. Pre-defined tile matrix sets
7.1.2. User-defined tile matrix sets
7.2. GeoTIFF tile store
7.3. File system tile store
7.4. Remote WMS tile store
7.5. Remote WMTS tile store
8. Coverage stores
8.1. Raster
8.2. MultiResolutionRaster
8.3. Pyramid
8.3.1. Prerequisities for Pyramids
8.4. Oracle GeoRaster
9. Metadata stores
9.1. Memory ISO Metadata store
9.2. SQL ISO Metadata store

111
111
112
113
113
114
116
117
118
118
120
121
122
123
128
128
132
133
134
135
136
136
137
137
149
149
150
150
151
152
153
154
156
156
157
158
158
159
162
162
163



9.3. SQL EBRIM/EO Metadata store
10. Map layers
10.1. Common configuration
10.1.1. Description metadata
10.1.2. Spatial metadata
10.1.3. Common layer options
Layer dimensions
Layer styles
Rendering options
10.2. Feature layers
10.2.1. Auto layers
10.2.2. Manual configuration
10.3. Tile layers
10.4. Coverage layers
10.4.1. Auto layers
10.4.2. Manual configuration
10.5. Remote WMS layers
10.5.1. Request options
10.5.2. Layer configuration
11. Map themes
11.1. Standard themes
11.2. Remote WMS themes
12. Map styles
12.1. Overview
12.2. Basics
12.2.1. General Layout
12.2.2. Symbolization Rules
Stroke
Fill
Font
12.2.3. Advanced symbolization
Using Graphics
Size
Gap
Rotation
Displacement
Halo
12.3. Using Filters
12.4. Basic Examples
12.4.1. Point Symbolizer
12.4.2. Line Symbolizer

165
166
166
166
167
167
168
169
171
172
172
172
174
175
175
175
175
176
177
179
179
181
182
182
183
183
183
184
185
185
186
186
188
188
188
189
189
190
190
190
191



12.4.3. Polygon Symbolizer
12.4.4. Text Symbolizer
12.5. SLD/SE clarifications
12.5.1. Perpendicular offset/polygon orientation
12.5.2. ScaleDenominators
12.6. deegree specific extensions
12.6.1. SLD/SE extensions
Use of TTF files as Mark symbols
Label AutoPlacement
LinePlacement extensions
ExternalGraphic extensions
12.6.2. SE & FE Functions
FormatNumber
FormatDate
ChangeCase
Concatenate
Trim
StringLength
Substring
StringPosition
Categorize, Interpolate, Recode
General XPath functions
13. Filter Encoding
13.1. Filter Operators
13.1.1. Arithmetic operators
13.1.2. Logical operators
13.1.3. Comparison operators
13.1.4. Spatial operators
13.2. Filter expressions
13.2.1. Simple filter expressions
Comparative filter expression
Spatial filter expression
13.2.2. Advanced filter expressions
Multiple filter operators
PropertylIsLike with a function
13.2.3. Filter expressions on xlink:href attributes
13.3. Custom FE functions
13.3.1. Area
13.3.2. Length
13.3.3. Centroid
13.3.4. InteriorPoint

192
193
194
194
195
195
195
195
196
196
196
197
197
197
197
198
198
198
199
199
199
202
203
203
203
203
204
204
205
205
205
205
206
206
206
207
207
207
208
208
208



13.3.5. IsPoint, IsCurve, IsSurface 208

13.3.6. GeometryFromWKT 209
13.3.7. MoveGeometry 209
13.3.8. iDiv 209
13.3.9.iMod 209
13.3.10. ExtraProp 210
13.3.11. GetCurrentScale 210
13.3.12. env 210

14. Server connections 212
14.1. JDBC connections 212
14.1.1. Minimal configuration example (PostgreSQL) 213
14.1.2. Configuration example (Oracle) 213
14.1.3. Configuration example (Microsoft SQL Server) 214
14.1.4. Configuration example (JNDI) 215
14.1.5. Configuration example (Oracle UCP) 216
14.1.6. Configuration options 217
14.1.7. Legacy configuration format 219
14.2. Remote OWS connections 220
14.2.1. Remote WMS connection 220
14.2.2. Remote WMTS connection 221

15. Process providers 222
15.1. Java process provider 222
15.1.1. Minimal configuration example 223
15.1.2. More complex configuration example 224
15.1.3. Configuration options 226
15.1.4. General options 227
15.1.5. The Processlet API 228
Processlet compilation 229
Testing Processlets using raw WPS requests 231

15.1.6. Input and output parameters 231
Basics of defining input and output parameters 232

Basics of accessing input and output parameters 235
Literal parameters 238
BoundingBox parameters 240
Complex parameters 242

15.1.7. Asynchronous execution and status information 246
Providing status information in the Processlet code 246

16. Coordinate reference systems 247
17. deegree REST interface 248
17.1. Setting up the interface 248
17.2. Detailed explanation 250



17.2.1. Downloading
17.2.2. Restarting
17.2.3. Updating
17.2.4. Listing
17.2.5. Storing
17.2.6. Deleting
17.2.7. Invalidating tile store caches
17.2.8. CRS queries
18. deegree GML tools CLI

18.1. Prerequisite

18.2. Usage
18.2.1. Usage of option cycledepth

18.2.2. Usage of option listOfPropertiesWithPrimitiveHref

18.2.3. Usage of option referenceData

18.3. Examples
18.3.1. Configure proxy

19. Java modules and libraries

19.1. Java code and the classpath
19.1.1. Web application classpath
19.1.2. Workspace classpath

19.2. Checking available JARs

19.3. Adding database modules
19.3.1. Adding Oracle support
19.3.2. Adding Oracle GeoRaster support
19.3.3. Adding Microsoft SQL server support

20. GDAL components

20.1. Connecting GDAL and deegree

20.2. GDAL settings
20.2.1. Minimal GDAL settings example
20.2.2. More complex GDAL settings example
20.2.3. Configuration options

20.3. GDAL Layer
20.3.1. Configuration example

20.4. GDAL Tile Store
20.4.1. Minimal configuration example
20.4.2. More complex configuration example

20.4.3. Configuration options

250
250
250
250
250
251
251
251
252
252
252
253
253
254
256
258
259
259
259
260
260
260
261
261
262
263
263
264
264
265
265
265
265
266
266
267
268



Chapter 1. Introduction

deegree webservices are implementations of the geospatial webservice specifications of the Open
Geospatial Consortium (OGC) and the INSPIRE Network Services. deegree webservices 3.4 includes
the following services:

Web Feature Service (WFS): Provides access to raw geospatial data objects

* Web Map Service (WMS): Serves maps rendered from geospatial data

Web Map Tile Service (WMTS): Serves pre-rendered map tiles

* Catalogue Service for the Web (CSW): Performs searches for geospatial datasets and services

Web Processing Service (WPS): Executes geospatial processes

With a single deegree webservices installation, you can set up one of the above services, all of them
or even multiple services of the same type. The remainder of this chapter introduces some notable
features of the different service implementations and provides learning trails for learning the
configuration of each service.

1.1. Characteristics of deegree WFS

deegree WFS is an implementation of the OGC Web Feature Service specification. Notable features:

* Official OGC reference implementation for WFS 1.1.0 and WFS 2.0.0 Simple

« Implements WFS standards 1.0.0, 1.1.0 and 2.0.0"

 Fully transactional (even for rich data models)

» Supports KVP, XML and SOAP requests

* GML 2/3.0/3.1/3.2 output/input

» Support for GetGmlObject requests and XLinks

» High performance and excellent scalability

* On-the-fly coordinate transformation

* Designed for rich data models from the bottom up

» Backends support flexible mapping of GML application schemas to relational models
* ISO 19107-compliant geometry model: Complex geometries (e.g. non-linear curves)
* Advanced filter expression support based on XPath 1.0

» Supports numerous backends, such as PostGIS, Oracle Spatial, MS SQL Server, Shapefiles or
GML instance documents

In order to learn the setup and configuration of a deegree-based WFS, we recommend
to read chapters Installation and Getting started first. Check out Example workspace 1:

TIP INSPIRE Network Services and Example workspace 2: Utah Webmapping Services for
example deegree WFS configurations. Continue with Configuration basics and Web
Feature Service (WES).


http://www.opengeospatial.org
http://www.opengeospatial.org
http://inspire.jrc.ec.europa.eu
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wmts
http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wfs

1.2. Characteristics of deegree WMS

deegree WMS is an implementation of the OGC Weh Map Service specification. Notable features:

* Official OGC reference implementation for WMS 1.1.1

« Implements WMS standards 1.1.1 and 1.3.0"”

» Extensive support for styling languages SLD/SE versions 1.0.0 and 1.1.0

* Supports KVP, XML and SOAP requests (WMS 1.3.0)

* High performance and excellent scalability

* High quality rendering

* Scale dependent styling

» Support for SE removes the need for a lot of proprietary extensions

» Easy configuration of HTML and other output formats for GetFeatureInfo responses

» Uses stream-based data access, minimal memory footprint

* Nearly complete support for raster symbolizing as defined in SE (with some extensions)
» Complete support for TIME/ELEVATION and other dimensions for both feature and raster data

* Supports numerous backends, such as PostGIS, Oracle Spatial, Shapefiles or GML instance
documents

* Can render rich data models directly

In order to learn the setup and configuration of a deegree-based WMS, we recommend
to read chapters Installation and Getting started first. Check out Example workspace 2:

TIP Utah Webmapping Services and Example workspace 1: INSPIRE Network Services for
example deegree WMS configurations. Continue with Configuration basics and Web
Map Service (WMS).

1.3. Characteristics of deegree WMTS

deegree WMTS is an implementation of the OGC Web Map Tile Service specification. Notable
features:
* Implements Basic WMTS standard 1.0.0 (KVP)
» High performance and excellent scalability
» Supports different backends, such as GeoTIFF, remote WMS or file system tile image hierarchies
» Supports on-the-fly caching (using EHCache)

» Supports GetFeatureInfo for remote WMS backends
In order to learn the setup and configuration of a deegree-based WMTS, we

TIP recommend to read Installation and Getting started first. Continue with Configuration
basics and Web Map Tile Service (WMTS).

10


http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wmts

1.4. Characteristics of deegree CSW

deegree CSW is an implementation of the OGC Catalogue Service specification. Notable features:

* Implements CSW standard 2.0.2

* Fully transactional

» Supports KVP, XML and SOAP requests

* High performance and excellent scalability

» ISO Metadata Application Profile 1.0.0

* Pluggable and modular dataaccess layer allows to add support for new APs and backends

* Modular inspector architecture allows to validate records to be inserted against various criteria
» Standard inspectors: schema validity, identifier integrity, INSPIRE requirements

* Handles all defined queryable properties (for Dublin Core as well as ISO profile)

* Complex filter expressions

In order to learn the setup and configuration of a deegree-based CSW, we recommend
to read Installation and Getting started first. Check out Example workspace 3: An ISO
Catalogue Service setup for an example deegree CSW configuration. Continue with
Configuration basics and Catalogue Service for the Web (CSW).

TIP

1.5. Characteristics of deegree WPS

deegree WPS is an implementation of the OGC Processing Service specification. Notable features:

* Implements WPS standard 1.0.0

» Supports KVP, XML and SOAP requests

* Pluggable process provider layer

» Easy-to-use API for implementing Java processes

» Supports all variants of input/output parameters: literal, bbox, complex (binary and xml)
» Streaming access for complex input/output parameters

* Processing of huge amounts of data with minimal memory footprint

» Supports storing of response documents/output parameters

* Supports input parameters given inline and by reference

* Supports RawDataOutput/ResponseDocument responses

» Supports asynchronous execution (with polling of process status)

In order to learn the setup and configuration of a deegree-based WPS, we recommend
to readInstallation and Getting started first. Check out Example workspace 4: Web
Processing Service demo for an example deegree WPS configuration. Continue with
Configuration basics and Web Processing Service (WPS).

TIP

11


http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/wps

[1] Passes OGC WES CITE test suites (including all optional tests)
[2] Passes OGC WMS CITE test suites (including all optional tests)

12



Chapter 2. Installation

2.1. System requirements
deegree webservices work on any platform with a compatible Java SE 8 installation, including:

¢ Microsoft Windows
e Linux

¢ MacOS

Supported Java SE 8 versions are Oracle JDK 8 "' and OpenJDK 8 ™.

Newer Java SE versions such as the LTS versions 11 and 16 are currently not
NOTE supported by deegree 3.4. Please check out our wiki page Java 11 support for
further information.

2.2. Downloading

deegree webservices downloads are available on the deegree home page. You have the choice
between:

« Docker : Docker Image with deegree webservices on OpenJDK and Apache Tomcat ™!

« WAR: Generic Java Web Archive for deployment in an existing Java Servlet container '*

« ZIP: Distribution bundle with Apache Tomcat "

If you are confused by the options and unsure which version to pick, use the ZIP. All
TIP variants contain exactly the same deegree webservices webapp, they only differ in
packaging.

2.3. Starting and stopping

In order to run the ZIP version, extract it into a local directory of your choice. Afterwards, change to
the directory deegree-webservices-tomcat-bundle-3.4.x/apache-tomcat-8.x.y/bin and fire up the
included start script for your operating system:

* Windows: startup.bat

* Linux/MacOS: startup.sh (when starting via a Desktop Environment, choose "Run in terminal”,
and you may need to grant permission to execute the scripts with chmod a+x *.sh before)

You should now see a terminal window on your screen with a lot of log messages:

13


http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://openjdk.java.net
https://github.com/deegree/deegree3/wiki/Java-SE-11-Support
http://www.deegree.org

Figure 1. deegree webservices starting up

If you don’t see this terminal window, make sure that the java command is on the
system path. You can verify this by entering java -version at the command prompt.
Also ensure that JAVA_ HOME system environment variable points to the correct
installation directory of a compatible JDK.

TIP

You may minimize this window, but don’t close it as long as you want to be able to use the deegree
webservices. In order to check if the services are actually running, open http://localhost:8080 in
your browser. You should see the following page:

deegree 3 console - Mozilla Firefox

deegree 3 console x W

_(- localhost v & ||~ Google aQ¥vBe $§$ & @ » =

Security hint: No password has been set

Active workspace: default(extemal)  [Reload

general Welcome to the deegree services console

al mel

metadata
tile

map layers
layers For more information, piease refer to the official documentation.

Figure 2. deegree webservices administration console

To shut deegree webservices down, switch back to the terminal window and press CTRL+C or
simply close it.

If you want to run deegree webservices on system startup automatically, consider
installing Apache Tomcat 8 as a system service. Afterwards, download the WAR

TIP version of deegree webservices and deploy it into your Tomcat installation (e.g. by
copying the WAR file into the webapps folder). Consult the Tomcat documentation for
more information and options.

2.4. Securing deegree

Most weaknesses in deegree come from incorrect or inappropriate configuration. It is nearly
always possible to make deegree more secure than the default out of the box configuration. The

14


http://localhost:8080
http://tomcat.apache.org
https://tomcat.apache.org/tomcat-8.5-doc/index.html

following documents best practices and recommendations on securing a production deegree
server, whether it be hosted on a Windows or Unix based operating system.

2.4.1. Software Versions

The first step is to make sure you are running the latest stable releases of software:

* Operating System including the latest updates and security patches
 Java Runtime Environment (JRE) or JDK

» Apache Tomcat, Jetty or your preferred Java Servlet container

* Third-party libraries such as GDAL, JDBC driver, and

» deegree webservices itself.

If you are running Apache Tomcat we recommend that you read and apply all

TIP . . : . .
recommendations as documented in Apache Tomcat Security Considerations.

2.4.2. Encryption

When operating deegree in a production environment enable HTTPS with SSL or TLS. Either enable
HTTPS on your Java Servlet Container or operate it behind a web server such as Apache httpd oder
NGINX.

TIP If you are running Apache Tomcat read the SSL. HowTo.

2.4.3. Securing deegree console and REST API

It is as a huge security problem to operate the deegree web app without setting a password for the
deegree console. How to set the password for the deegree console is described in Configuration
basics. The same applies to the deegree REST API. Since both transfer the credentials as clear text
(with a little bit of obscurity) it is highly recommended to enable encryption on the protocol level as
described above! For further information how to protect the deegree REST API read more in
deegree REST interface. You should also consider to limit the access to both resources. Apply a filter
by IP or hostname to only allow a subset of machines to connect and access the deegree console and
REST APIL

The deegree console provides access to the server file system. Therefore you
must not operate the Java Servlet container as root user! Furthermore you
should consider to enable the Java Security Manager and define restrictive file
permissions.”

WARNING

2.5. Logging configuration

The deegree webservices do use the Apache Log4j 2 framework for logging. The configuration of
the logging submodule can be stored in XML, YAML, JSON, or properties format. The web
application contains a default configuration file /WEB-INF/classes/log4j2.properties with two
appenders, one logging to the console Stdout (System.out) and the other writes the log messages into

15


https://tomcat.apache.org/tomcat-8.5-doc/security-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/ssl-howto.html
https://logging.apache.org/log4j/2.x

a file logs/deegree.log.
The configuration in a nutshell:

The console appender is configured with:

appender.console.type = Console @M

appender.console.name = STDOUT

appender.console.layout.type = PatternlLayout
appender.console.layout.pattern = %d %p %C{1.} [%t] %m%n @
appender.console.filter.threshold.type = ThresholdFilter
appender.console.filter.threshold.level = info ®

@ defines the type of the appender
@ defines the pattern for formatting the log message

® defines the threshold for this appender

The file appender is configured with:

appender.rolling.type = RollingFile @

appender.rolling.name = RollingFile

appender.rolling.fileName = ${logpath}/${filename} @
appender.rolling.filePattern = ${logpath}/deegree-%d{MM-dd-yyyy}-%i.log.gz ®
appender.rolling.layout.type = PatternlLayout
appender.rolling.layout.pattern = %d %p %C{1.} [%t] %m%n @
appender.rolling.policies.type = Policies ®
appender.rolling.policies.time.type = TimeBasedTriggeringPolicy
appender.rolling.policies.time.interval = 1
appender.rolling.policies.time.modulate = true
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
appender.rolling.policies.size.size=100MB
appender.rolling.strategy.type = DefaultRolloverStrategy
appender.rolling.strategy.max = 10

@ defines the type of the appender

@ defines the file name

® defines the format of the archived file names, when the policies are applied
@ defines the pattern for formatting the log message

® defines the policies when rolling over the files, triggered by size (>100MB) and time (> 1 day)

The log file name is defined by the following settings:

property.filename = deegree.log
property.logpath = ${sys:log.dir:-logs} @

@ defines the log directory, default is logs/ and can be defined by an environment variable log.dir

16



To turn off or on a specific logger use the logger definition as in the following example for
org.deegree:

logger.org.deegree.name = org.deegree @M
logger.org.deegree.level = info @
logger.org.deegree.additivity = false
logger.org.deegree.appenderRef.rolling.ref = RollingFile ®
logger.org.deegree.appenderRef.stdout.ref = STDOUT ®

@ defines the logger name, here all logger with names starting with org.deegree are affected
@ defines the threshold for this logger
® defines the appender used by this logger

You will find more information about Apache Log4j configuration in the Log4j 2 manual.

[3] Oracle JDK 8 and later requires a subscription from Oracle for use in production environments. Read further in Oracle Java SE
subscription.

[4] Open]DK binaries are provided by Azul Systems or AdoptOpenJDK.
[5] Requires an installation of Docker Community or Enterprise Edition, download Docker from www.docker.com.
[6] A Java Servlet 2.5 compliant container is required. We recommend using the latest Apache Tomcat 8 release.

[7] As of deegree 3.4.0 the ZIP distribution bundle is deprecated and the download links have been removed from the website.
Download the ZIP from the Nexus repository instead.

[8] How to run securely Java applications we recommend to follow the Java Security Guidelines and for Apache Tomcat the
Security Manager HowTo.

17


https://logging.apache.org/log4j/2.x/manual/
https://www.oracle.com/java/java-se-subscription/
https://www.oracle.com/java/java-se-subscription/
https://www.azul.com/downloads/zulu/
https://adoptopenjdk.net
https://www.docker.com/
http://tomcat.apache.org/
https://repo.deegree.org/#browse/search=attributes.maven2.artifactId%3Ddeegree-webservices-tomcat-bundle
https://docs.oracle.com/javase/8/docs/technotes/guides/security/index.html
http://tomcat.apache.org/tomcat-8.5-doc/security-manager-howto.html
http://tomcat.apache.org/tomcat-8.5-doc/security-manager-howto.html

Chapter 3. Getting started

In the previous chapter, you learned how to install and start deegree webservices. In this chapter,
we will introduce the deegree service console and learn how to use it to perform basic tasks such as
downloading and activating example configurations. In deegree terminology, a complete
configuration for a deegree instance is called "deegree workspace".

The following chapters describe the structure and the aspects of the deegree workspace in detail.
For the remainder of this chapter, just think of a deegree workspace as a directory of configuration
files that contains a complete configuration for a deegree webservice instance. You may have
multiple deegree workspaces on your machine, but only a single workspace can be active.

3.1. Accessing deegree’s service console

The service console is a web-based administration interface for configuring your deegree
webservices installation. If deegree webservices are running on your machine, you can usually
access the console from your browser via http://localhost:8080

deegree 3 console - Mozilla Firefox

deegree 3 console R -

€ | @ localhost:8080 v | |B~ coogle asvsa 3 &4 @ » =

Security hint: No password has been set
Active workspace: defauliextermal)  [Reload

Welcome to the deegree services console

Use the general menu on the left to

i activate example configurations
ings

send requests i
egree modules
see layers A,

webservices
services
data stores » web services: Configure offered OG
coverage stores: Configure access (o dat
teature . layers: Configure map layers ar
e = server connections: Configure ¢
- » processes: Configure geospatial WPS p

map layers
layers
styles
themes

connections
databases

For more information, please refer to the official documentation.

remote services
processes
provider

Figure 3. deegree webservices administration console

If you’re not running the ZIP version, but deployed the WAR version into a web
container, you most probably will have to use a different URL for accessing the

TIP
console, e.g. http://localhost:8080/deegree-webservices-3.4.27. The port number and
webapp name depend on your installation/deployment details.
You can access the service console from other machines on your network by
TIP exchanging localhost with the name or IP address of the machine that runs deegree

webservices.

For the remainder of the chapter, only the general section is relevant. The menu items in this
section:

18


http://localhost:8080
http://localhost:8080/deegree-webservices-3.4.27

» workspaces: Download and activate example configurations
* proxy: Configure network proxy settings

» password: Set a password for accessing the service console

* module info: Display loaded deegree modules

* send requests: Send raw OGC web service requests

* see layers: Display WMS layers

3.1.1. Downloading and activating example workspaces

Click the workspaces link on the left:

deegree 3 console - Mozilla Firefox

deegree 3 console R -

€ ) @ localhost:8080/console/workspace/index.xht v & | Bl Google asvsa 3 &4 @ » =

Security hint: No password has been set

Active workspace: defaultextermal)  [Reload

general Workspace management
workspaces

Working directory: /home/bretschneider/.deegree

Active workspace

default(extemal)

services Available workspaces
data stores
coverage
feature
metadata Import an official workspace
tile
map layers
layers
styles deegre

deegre
deegre

themes deegree-wor
connections
databases

Create a new workspace
proces:
provider Identifier

Create new

Figure 4. Workspaces view

The bottom of the workspaces view lists example workspaces provided by the deegree project. You
should see the following items:

* deegree-workspace-csw: Example workspace 3: An ISO Catalogue Service setup

* deegree-workspace-inspire: Example workspace 1: INSPIRE Network Services

* deegree-workspace-utah: Example workspace 2: Utah Webmapping Services

» deegree-workspace-wps: Example workspace 4: Web Processing Service demo

If the machine running deegree webservices uses a proxy to access the internet and
you don’t see any available example configurations, you will probably have to
configure the proxy settings. Ask your network administrator for details and use the
proxy link to setup deegree’s proxy settings.

TIP

If you click Import, the corresponding example workspace will be fetched from the artifact
repository of the deegree project and extracted in your deegree workspaces folder. Depending on
the workspace and your internet connection, this may take a while (the Utah workspace is the
largest one and about 70 MB in size).

19



After downloading has completed, the new workspace will be listed in section "Available
workspaces":

deegree 3 console - Mozilla Firefox

deegree 3 console * G

€ ) @ localhost:8080/console/workspace/index.xht v & | [B)» Google Q+Be & A& @ » =

Security hint: No password has been set

Active workspace: defaultiextemal)  [Reload

Workspace management

Working directory: /nome/bretschneider/.deegree

Active workspace
send requests
see layers defavlt(extemal)

webservices

S Available workspaces
data stores
coverage deegree

map layers
. deegree-y

deegree-y

deegree-workspace-wp:

processes
provider

Create a new workspace

Identifier

Create new

Figure 5. Downloaded, but inactive workspace

You can now activate the downloaded workspace by clicking Start. Again, this may take a bit, as it
may require some initialization. The workspace will be removed from the list of inactive
workspaces and displayed next to "Active workspace:" (below the deegree logo). Your deegree
instance is now running the configuration that is contained in the downloaded workspace.

3.2. Example workspace 1: INSPIRE Network Services

This workspace is a basic INSPIRE View and Download Services setup. It contains a transactional
WFEFS (2.0.0 and 1.1.0) configured for all Annex I Data Themes and a WMS (1.3.0 and 1.1.1) that is
configured for three layers from three Annex I Data Themes. The workspace contains some
harmonized dutch base data for Administrative Units, Cadastral Parcels and Addresses. The WFS is
configured to behave as an INSPIRE Download service (Direct Access) that delivers the base data as
valid, harmonized INSPIRE GML and supports rich querying facilities.

This workspace is pre-configured to load harmonized INSPIRE features from GML files
into memory, but can easily be adapted to use PostGIS, Oracle Spatial or Microsoft SQL
Server databases as storage backend (see Auto-generating a mapping configuration
and tables and SQL feature store).

TIP

After downloading and activating the "deegree-workspace-inspire" workspace, you can click the
see layers link, which opens a simple map client that displays a base map (not rendered by
deegree, but loaded from the OpenStreetMap servers).

20



deegree 3 layer preview - Mozilla Firefox

Amsterdam

Brrherm

Dordrecht -

ghousen

nnnnn

Heimong,

VVVVV

et rtwerpen

Figure 6. Map client showing base map

Click the + on the right to see a list of available layers. You can now tick the INSPIRE layers offered
by the deegree WMS.

deegree 3 layer preview  x

€ @localhost + & | |8~ coogle Qo8 &8 & @Q- » =

8

Figure 7. INSPIRE layers rendered by the deegree WMS

The map client is based on OpenLayers. Drag the map by holding the mouse button
and moving your mouse. Zoom using the controls on the left or with the mouse wheel.
Alternatively, you can open a zoom rectangle by holding the SHIFT key and clicking
the mouse button in the map area.

TIP

Note that nothing will be rendered for layer AD.Address, as the configured storage (memory)
doesn’t contain any Address features yet. However, the workspace ships with example WFS-T
requests that can be used to insert a few harmonized INSPIRE Address features. Use the send
requests link in the service console to access the example requests (you may need to go back in
your browser first):

Use the third drop-down menu to select an example request. Entries Insert_200.xml or

21


http://openlayers.org/

Insert_110.xml can be used to insert a small number of INSPIRE Address features using WFS-T
insert requests:

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... x Y

€ @localhost *C|Bvcoege QW B ¥ A& O » | =

Choose:| wfs || Address <) [Insert_200.xml 2

add request | saverequest | delet ~component_200.xml
| geographicPosition_200.xml

inspirelds_200.xm!

<wfs:Transaction xmins:wfs="http://wi streetAndHouseNumber_200.xml | [tp://ww.w3.0rg/1999/x1ink"
xmlns :base="urn:x-inspire: speci ficati] pckFeature - -

inspire:specification:gnlas:Geographi |l 110.xml [specification:gnlas:Addresses:3.0"
xmlns:app="http: //www.deegree.org/apg gk [L/3.2" xmlns:cp="urn:x-
inspire:specification:gnlas:Cadastral AU-200.xmL lorg/2001/XnLschema-instance”
Version="2.0.8" service="WrS's ByThoroughfareName_110.xml
<wfs:Insert handle="insert"> ByThoroughfareName_200.xml
<gnl:FeatureCollection gml:id="wf Transaction
<gnl.: featurelenber> Delete_110.xml
<ad:Address gnl:id="NL.KAD.BA Delete 200.xml
<ad:inspireld= Insert_110.xml

<base:Identifier>
<base:localld>05322000¢

Replace_200.xml
Update_insertAfter_200.xml
Update_insertBefore_200.xml
~=  Update_remove_200.xml

URL: nttp://localhost:8080/services/| wfs  J

Update_replace2_200.xml

Select or enter a request above and click the|
Update replace 200.xml

sponse will be displayed below

Figure 8. WFS-T example requests

Click Send to execute the request. After successful insertion, the internal storage contains a few
addresses, and you may want to move back to the layer overview (see layers). If you activate layer
AD.Address this time, the newly inserted features will be rendered by the deegree WMS (look for
them in the area of Enkhuizen):

deegree 3 layer preview - Mozilla Firefox

deegree 3 layer preview  x Yl
localhost v¢ Bvcooge Q W B ¥ A O » =

L

ui

overlays

® openstreetMap
& AD.Address
B AU.AdministrativeUnit
8 Au.AdministrativeBoundary
@ cp.cadastralParcel
@ cp.cadastralZoning
8. 8 cp.cadastralBoundary

Zudie
‘Amsterdam
Y i =g ol
§ A
en Haag — Uean i
4 amh
- Rotiorim %
N N
: e e
Dortrecri
!
S Herogenbosch
bres
Titas)
/ reimons e
J Moers i g Essen
Data CC-By-5A by OpenStrestMap
T 5 Venio) A
i 7 Keeted
: 7 “wpperta
werpen ¢ ¢
Brugge. ape! .2 "manchenglacbach

Figure 9. Ad.Address layer after insertion of example Address features

The example requests also contain a lot of query examples, e.g. requesting of INSPIRE Addresses by
street name:

22



Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... * &3

€ ) @localhost:8080/console/client/index.xhtml v | [BvGooge @ 788 ¥ & &+ »

Choose:| wfs Z | Address = ByThoroughfareName_200.xml = ad|

<wfs:DescribeFeatureType xmins:wfs="http://www.0pengis.net/wfs" xmins:ad="urn:x-
inspire:specification:gmlas:Addresses:3.0" xmlns:xsi="http://waw.w3.0rg/2081/XMLSchena-instance” version="1.1.9"
service="WFS" xsi:schemaLocation='http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.1.0/wfs.xsd"
outputFormat="text/xnl; subtype=gnl/3.2.1">

<wFs : TypeName>ad: Address</wfs : TypeName>
</wfs:DescribeFeatureType>

URL: http:/flocalhost:8080/services!| WFs 3 send

download response

<wfs:FeatureCollection xsi:schemalocation="http://www.opengis.net/wfs/2.0 http://schemas.openg
http://schemas.opengis.net/gmli/3.2.1/gml.xsd urn:x-inspire:specification:gmlas:Addresses:3.0 http:
amp;VERSION=2.0.0&amp;REQUEST=DescribeFeatureType&amp;OUTPUTFORMAT =application%2
amp:TYPENAME=ad:Address&amp:NAMESPACES=xmIns(ad,urn%3Ax-
inspire%3Aspecification%3Agmlas%3AAddresses%3A3.0)" timeStamp="2014-08-07T15:39:227" n|
fwww.w3.0rg/2001/XMLSchema-instance” xmins:wfs="http://www.opengis.net/wfs/2.0" xmins:gml=
<wfs:boundedBy>
<gml:Envelope srsName="urn:ogc:def:crs:EPSG::4258">
<gml:lowerCorner>52.691393 5.250599</gml:lowerCorner>
<gml:upperCorner>52.691393 5.250599 </gml:upperCorner>
<fgml:Envelope=>
</wfs:boundedBy>
<wfs:member>
<ad:Address gml:id="FEATURE_cd2014bf-dba6-45ef-b740-e2af42c8829d" xmIns:ad="urn:x-ir-

Figure 10. WES query examples

This workspace is a good starting point for implementing scalable and compliant
INSPIRE View and/or Download Services. It can easily be adapted to use PostGIS,
Oracle Spatial or Microsoft SQL Server databases as storage backend (see Auto-

TIP
generating a mapping configuration and tables and SQL feature store). Other things
you may want to adapt is the configuration of Map layers, the Map styles or the
reported Metadata.

TIP You can also delete features using WFS transactions. After deletion, they will not be

rendered anymore as WMS and WEFS operate on the same feature store.

3.3. Example workspace 2: Utah Webmapping Services

The Utah example workspace contains a web mapping setup based on data from the state of Utah. It
contains a WMS configuration (1.3.0 and 1.1.1) with some raster and vector layers and some nice
render styles. Raster data is read from GeoTIFF files, vector data is backed by shapefiles.

Additionally, a WFS (2.0.0, 1.1.0 and 1.0.0) is configured that allows to access the raw vector data in
GML format.

After downloading and activating the "deegree-workspace-utah" workspace, you can click on the

see layers link, which opens a simple map client that displays a base map (not rendered by
deegree, but loaded from the OpenStreetMap servers).

23



] deegree 3 layer preview - Mozilla Firefox
deegree 3 layer preview  * Y

€ @localhost e|H-coge Q TE $ A @ » =
-
Rack Springs
Ciy.
-
e
..... el
d
" e
5 Gagrge Data CC-By-SA by OpenStreetMap
o

Figure 11. Map client showing base map

Click the + on the right to see a list of available layers. Tick the ones you want to see. They will be
rendered by your deegree webservices instance.

deegree 3 layer preview - Morzilla Firefox

deegree 3 layer preview  x Y&

€ @localhost v c| B~ coogle Qo8 &8 & @Q- » =

[ - ] ) ° Lo ¢ overlays
R P : @ openstreetMap
é ® municipalities
® countyboundaries
a 8 countynames
~ g ; 8 B zipcodes
N o M| ©stateboundary
) Ly ¢ 8 orthophoto
P - ® airports

o4 K B 8 railroads

: R B roads
R @ pEM90
= 290N ® pEM30
LA et 8 elevationcontours
’ B rivers
© lakes
® groundwater
Pox [ c. @ springs

B weatherstations
lominantvegetation

energyresources
B cities

&l

.
B | . S o Page:
Data Of}-By-SA by OpenStreetMap

Figure 12. Selecting WMS layers to be displayed

The map client is based on OpenLayers. Drag the map by holding the mouse button
and moving your mouse. Zoom using the controls on the left or with the mouse wheel.
Alternatively, you can open a zoom rectangle by holding the SHIFT key and clicking
the mouse button in the map area.

TIP

24


http://openlayers.org/

0 deegree 3 layer preview - Mozilla Firefox
deegree 3 layer preview %

€ ) @ localhost:8080/console/webservices/wms/wi v C | B+ Google avsa 38 &4 @ » =

. Overlays
® openStreetMap
® municipalities
@ countyboundaries
B countynames
B zipcodes
® stateboundary
B orthophoto
B airports
8 railroads
8 roads
® pEM30
@ pem3o
B clevationcontours
8 rivers
® lakes
8 groundwater
® springs
B weatherstations
B dominantvegetation
[ Prr—
® cities

Data CC-By-SA by Ope

Bird:
irdseye

Figure 13. Exploring Utah layers

In order to send requests against the WES, you may use the send requests link in the service
console (you may need to go back in your browser first). A simple interface for sending XML
requests will open up. This interface is meant for accessing OGC web services on the protocol level
and contains some reasonable example requests.

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... x Y&

€ ) @ localhost:8080/console/client/index.xhtml v &| B~ Google aQ&+Be & A @ » =

Choose:| wfs 2 || Utah 2 DescribeFeatureType_110_GML2.xml

add request | saverequest || delete request
<wfs:DescribeFeatureType xmlns:wfs="http://ww.0pengis.net/wfs" xmlns:xsi="http://w.w3.0rg/2001/XMLSchena-instan
version="1.1.8" service="WFS" xsi:schemalocation="http://www.opengis.net/wfs http://schemas.opengis.net/wfs/1.1.8

/wfs.xsd" outputFormat="text/xml; subtype-gml/2.1.2">
</wfs:DescribeFeatureType>

URL: htp:#localhost:g080rservices!| wfs 2| send

Select or enter a request above and click the ‘SEND' button. After processing, the service response will be displayed below:

Figure 14. Sending example requests

Select one of the example requests from the third drop-down menu and click Send. The server
response will be displayed in the lower section.

25



Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... * &3

€ | @ localhost:8080/console/client/index.xht v & | B~ Google Q&8s &+ & @ » =

Choose:| wfs 2 || Utah 2 GetFeature_110_GML2.xml
add request | saverequest || delete request

<wfs:DescribeFeatureType xmlns:wis="http://wwy.opengis.net/wfs" xmlns:xsi="http://waw.w3.0ra/2001/XMLSchema-insta
version="1.1.8" service="WES" xsi ="http://wey.QRENGLS. net/ufs http://schemas.opengis.net/wfs/1.1.0
lutputFormat="text/xml; subtype=gnl/2.1.2">

</its:DescribereatureTypes]

URL: hitp://localhost:8080/services/| Wfs 2 send

download response

<wfs:FeatureCollection xsi:schemalocation="http://www.opengis.net/wfs http://localhost:8080/sery
Iwfs?SERVICE=WFS&amp;VERSION=1.1.0&amp;REQUEST=DescribeFeatureType&
amp;OUTPUTFORMAT=text%2Fxml%3B+subtype%3DgmIl%2F2.1.2&
amp;TYPENAME=wfs:FeatureCollection&amp;NAMESPACE=xmins(wfs=http%3A%2F
%2Fwww.opengis.net%2Fwfs) http://www.deegree.org/app http:/flocalhost:8080/services
Iwfs?SERVICE=WFS&amp;VERSION=1.1.0&amp;REQUEST =DescribeFeatureType&
amp;OUTPUTFORMAT =text%2FxmIi%3B+subtype%3Dgmi%2F2.1.2&amp; TYPENAME=app:StateBo
amp;NAMESPACE=xmIns(app=http%3A%2F
%2Fwww.deegree.org%2Fapp)" timeStamp="2014-08-08T08:47:39Z" xmIns:xsi="http://www.w3.o1
/2001/XMLSchema-instance” xmins:wfs="http://www.opengis.net/wfs" xmins:gm|="http://www.opel
fgml">
<gml:boundedBy>
<gml:null>unknown</gml:null>
</gml:boundedBy>
<gml:featureMember>
<app:StateBoundary fid="STATEBOUNDARY_0" xmIns:app="http://www.deegree.org/app">
<app:objectid>326</app:objectid>
<app:state>Mask</app:state>
<app:area>89355986104.8</app:area>

Figure 15. Sending example requests

WES request types and their format are specified in the OGC Web Feature Service

TIP e
specification.

Instead of using the built-in layer preview or the generic OGC client, you may use any
compliant OGC client for accessing the WMS and WFS. Successfully tested desktop

TIP clients include Quantum GIS (install WES plugin for accessing WFS), uDig, OpenJUMP
and deegree iGeoDesktop. The service address to enter in your client is:
http://localhost:8080/services.

QGis 2.4.0-Chugiak

= N [ P = (& @GN 6) Lo BN D » »
DEBR POV PL,LHDPDLIAR & @
] °°* g > abg| ™ ab abe ahg] abg) abg. ) 5w
B o ® &= “EHNEERE . Aa
Layer ® Vineyard
v & ¥ cities
'n PROVO
]
.
4
springville
@ L
@
\‘\}a Spaniﬂl Fork
%
Moark Jct.
Va - -
a
salem
n
Paﬁ;un
Fh Elk Ridge
Woodland Hills
Genola spring Lake "
a
Thistle
Santaquin L]
o
Birdseye
) oordinate 460104,4452465 AaBstat (:246.598 | v | [ Zeichnen PSG:2691: @ (A

Figure 16. Quantum GIS displaying a WMS layer from the Utah workspace

3.4. Example workspace 3: An ISO Catalogue Service
setup

This workspace contains a catalogue service (CSW) setup that complies to the ISO Application

26


http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://localhost:8080/services

Profile. After downloading and starting it, you will have to setup tables in a PostGIS database first.
You will need to have an empty and spatially-enabled PostGIS database handy that can be accessed
from the machine that runs deegree webservices.

Instead of PostGIS, you can also use the workspace with an Oracle Spatial or a
TIP Microsoft SQL Server database. In order to enable support for these databases, see
Adding database modules.

After downloading and starting the workspace, some errors will be indicated (red exclamation
marks):

deegree 3 console - Mozilla Firefox
deegree 3 console x W

€ @localhost:8080, ace/index.xhl v & | (B~ Google Q&+ B & A @ » =

Security hint: No password has been set
Active workspace: deegree-workspace-Csw  [Reload

general Workspace management

Working directory: /homefbretschneider/.deegree

Active workspace

send reques|
see layers deegree-workspace-csw

webservices

senvices ! Available workspaces
data stores
coverage
feature
metadata t Import an official workspace
tile
deegree
map layers
R deegree
styles deegree

deegree-work

thy
connections

databases !
remote services Create a new workspace
processes
provider dentifier
Create new

Figure 17. Initial startup of deegree-workspace-csw

Don’t worry, this is just because we’re missing the correct connection information to connect to our
database. We’re going to fix that right away. Click connections — databases:

deegree 3 console - Mozilla Firefox

deegree 3 console *

€ @localhost:8080, nection/sql/indey v & | B~ Google aQvsa 38 & @ » =

Security hint: No password has been set
Active workspace: deegree-workspacecsw  [Reload

general SQL database connections

! connl Show errors

see layers

webservices
services !

data stores
coverage
feature
metaata t
tile

map layers
layers
styles
themes

connections
databases !
remote services

processes
provider

Figure 18. JDBC connection view

Click Edit:

27



deegree 3 console - Mozilla Firefox

deegree 3 console x W
€ @ localhost ce|Hlrcoode QT E $ A G- » =
Security hint: No password has been set
Active workspace: deegree-workspacecsw  [Reload

general

Connection

Figure 19. Editing the JDBC resource configuration file

Make sure to enter the correct connection parameters and click Save. You should now have a
working connection to your database, and the exclamation mark for connl should disappear. Click
Reload to force a full reinitialization of the workspace:

deegree 3 console - Mozilla Firefox

deegree 3 console * G
€ @localhost ¢ Bvcooge QW B ¥ A ©- » =
Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload
general SQL database connections
workspaces
On connl Deactivate

Create new

webservices
semvices !

data stores

processes
provider

Figure 20. Reinitializing the workspace

The indicated problems are gone now, but we still need to create the required database tables.
Change to the metadata store view (data stores — metadata) and click Setup tables:

28



deegree 3 console - Mozilla Firefox

deegree 3 console

€ @localhost console/generic/xmleditor.xt v & | [Blv Google

Active workspace: deegree-workspacecsw  [Relo

general Metadata stores

Deactivate

Create new

send requests
see layers

webservices
services

data stores
coverage
teature
metadata
tile

map layers
layers
styles
themes

connections
databases

remote services
processes
provider

Qw6 ¥ 4 @ »

Security hint: No password has been set

Info

Setwp table:

Figure 21. Metadata store view

In the next view, click Execute:

deegree 3 console - Mozilla Firefox

deegree 3 console

sql.xhtm v & | B~ Google

€ @localhost:8

Reload

Active workspace: deegree-workspace-Csw

general Setup database
workspaces

CREATE TABLE IDXTB MAIN (
id integer NOT NULL,
version integer,
status numeric(1),

send requests
considering multi languages
B

ParentTd varchar(156).

connections
Click Exectite to create tables

databases

remote services —r

processes
provider Tum or

ighting

awvs ¥ 4 ©@- »

Security hint: No password has been set

title yarchar(568) NOT NULL, -- can geoure multiple times,

see layers
(500!
abstract text NOT NULL, -- can pgoyre multiple times,
webservices considering multi languages
senvices anytext text NOT NULL,
data stores fileidentifier varchar(1se) NoT NULL,
Ccoverane modified fimestamp NOT NULL,
. type varchar(2s),
(BT 1opicCategories yarchar(1000),
hetariai revisiondate fimesfamp,
tile sreatipndate timestamp,
map layers publicationdate QWW[QW)
= i* boolean,
styles Language char(3),
themes (158) , -- NOT NULL, \/

Figure 22. Creating tables for storing ISO metadata records

29



deegree 3 console - Mozilla Firefox
deegree 3 console ER -

€ ) @ localhost:8080/console/generic/sql.xhtrr v | |8~ coogle avsa 38 &4 @ » =

Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload

general
worksp 115 x

Metadata stores
send requests On iso19115 Deactivate Infa Loader Setup tables

see layers

Create new

webservices

services
data stores

coverage

teature

metadata

tile
map layers

layers

styles

themes
connections

databases

remote services
processes

provider

Figure 23. After table creation

If all went well, you should now have a working, but empty CSW setup. You can connect to the CSW
with compliant clients or use the send requests link to send raw CSW requests to the service. The
workspace comes with some suitable example requests. Use the third drop-down menu to select an
example request. Entry complex_insert.xml can be used to insert some ISO example records using
a CSW transaction request:

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... x Y&
€ ) @ localhost:8080/console/client/index.xhtml v €| B ¥ Google aQvsa 3 &4 @ » =

Choose:[csw 3 | examples 2| [ complex_insert.xml = add request

save request | delete request

<Transaction xmlns="http://ww.0pengis.net/cat/csw/2.8.2" xmins:xsi="http://wew.w3.0rg/2001/XM5chena-instance”
version="2.0.2" service="CSW' xsi:schemalocation="http://ww.0Opengis.net/cat/csw/2.8.2 http://schemas.opengis.net

/csw/2.6.2/CSW-publication.xsd http: //www.isotc211.0rg/2605/gnd http://schemas.opengis.net
/150/19139/20070417/gnd/metadataEntity. xsd http://wa.is0tc211.0rg/2005/5rv
http://schenas.opengis.net/is0/19139/20060504/5 rv/serviceletadata. xsd">

<Insert>

<D _Metadata xmlns="http://wew.isotc211.0rg/2005/gnd" xmlns:srv="http://wew.isotc211.0rg/2005/srv"
xmlns :gnl="http://wiw.opengis.net/gnl/3.2" xmlns:gco="http://ww.isotc211.0rg/2005/gco”
xmins : gnd="http:/ /ww. is0tc211.0rg/2005/gnd">

<fileIdentifier>
<geco:CharacterString>111c0076-b23f-76e5- c888-94327664111</gco: CharacterString=
</fileldentifier>
language>
URL: http://localhost:8080/services!| CSW 2 send

Select or enter a request above and click the 'SEND' button. After processing, the service response wil be displayed below,

Figure 24. Choosing example requests

Click Send. After successful insertion, some records have been inserted into the CSW (respectively
the database). You may want to explore other example requests as well, e.g. for retrieving records:

30



Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... %

€ | @ localhost:8080/console/client/index.xht v & | B~ Google Q&8s &+ & @ » =

Choose:| csw ;| examples getAllRecords_ISO.xml - add requesk -

<csw:DescribeRecord xmlns:csw="http://uww.0pENgis.net/cat/csw/2.0.2" xmlns :xsd="http://wd.w3.0rg/2001/XMLSChema"
xmlns :xsi="http:/ /www.w3.0rg/2001/XMLSchema- instance” xsi:schemalocation="http: //was.opengis.net/cat/csw/2.0.2
http://schenas.opengis.net/csw/2.0.2/CSW-discovery.xsd" schemalanguage="http: //ww.w3.0rg/2001/XHLSchena" service
version="2.0.2">

<csw:TypeName>csw:Records/csw: TypeName>
</csw:DescribeRecord>

URL: http://localhost:8080/services!| CSW 2 send

download response

<csw:GetRecordsResponse xsi:schemalocation="http://www.opengis.net/cat/csw/2.0.2 http://scher|
/CSW-discovery.xsd http://www.isotc211.0rg/2005/gmd http://schemas.opengis.net/iso/19139/2007(
fiwww.w3.0rg/2001/XMLSchema-instance" xmins:csw="http://www.opengis.net/cat/csw/2.0.2">
<csw:SearchStatus timestamp="2014-08-08T09:29:11.246Z"></csw:SearchStatus>
<csw:SearchResults elementSet="full' recordSchema="http://www.isotc211.org
/2005/gmd" numberOfRecordsMatched="10" numberOfRecordsReturned="10" nextRecord="0" ex
<MD_Metadata xmIns="http://www.isotc211.0rg/2005/gmd" xmIns:srv="http://www.isotc211.c
fwww.opengis.net/gml/3.2" xmIns:gco="http://www.isotc211.0rg/2005/gco" xmins:gmd="http:/iww
<fileldentifier>
<gco:CharacterString>111c0076-b23f-76e5-c888-94327664111 </gco:CharacterString>
</fileldentifier>
<language>
<LanguageCode codelist="http://www.w3.0rg/WAI/ER/IG/ert/is0639.htm" codeListValue=
</language>
<characterSet>
<MD_CharacterSetCode codelist="MD_CharacterSetCode" codelistValue="utf8"></MD
</characterSet>
<hierarchyLevel>
<MD_ScopeCode codelist="MD_ScopeCode" codelistValue="series"></MD_ScopeCode
Ihierarchvl evel v

Figure 25. Other example CSW requests

3.5. Example workspace 4: Web Processing Service
demo

This workspace contains a WPS setup with simple example processes and example requests. It’s a
good starting point for learning the WPS protocol and the development of WPS processes. After
downloading and starting it, click send requests in order to find example requests that can be sent
to the WPS. Use the third drop-down menu to select an example request:

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... x

)/console/client/index.xhtml v €| [+ Google aQ&+Be & A @ » =

@ localhost: &

Choose:| WPS = || geometry - DescribeAll.xml - add request | saveres
delete request

<DescribeProcess xmlns="http://ww.0pEngis.net/wps/1.8.0" xmins:xLink="http://www.w3.0rg/1999/xLink"

xmlns :xsi="http://www.w3.0rg/2061/XMLSchena- instance” xmlns:ows="http://ww.opengis.net /ows/1.1"

xsi:schemalocation="http://ww.0pengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0

/wpsDescribeProcess_request.xsd" service="WPS" version="1.8.8" language="en">
<ows:Identifier>ALL</ows: Identifier>

</DescribeProcess>

URL: http://localhost:8080/s

rvices/| Wps 3 send

Select or enter a request above and click the ‘SEND' button. After processing, the service response will be displayed below:

Figure 26. Choosing a WPS example request

Click Send to fire it against the WPS:

31



Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... %

console/client/index.xhtml v €| [+ Google avsa 38 &4 @ » =

@ localhost:80

Choose:| wps 3
delete request

geometry Buffer.xml add request | saveres

<wps:Execute xmlns:wps="hTtp://ww.0pengis.net/wps/1.0.0" xmins:xLink="Nttp://ww.w3.0rg/1999/xLink"
xmlns :xsi="http://wiw.w3.0rg/2001/XMLSchena- instance” xmlns :ows="http://www.opengis.net /ows/1.1" service="WPs"
version="1.0.0" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0
/wpsExecute_request.xsd"s
<ows:Identifier>Buffer</ows: Identifier>
<wps:Datalnputs>
<wps:Input>
<ows : Identifier>GULInput</ows: Identifier>
<wps :Data>
<wps : ComplexData>
<Curve xmlns="http://wiv.0pengis. net/gnl® xmins:gml="http://www.opengis.net/gnl" gml:id="C1"
srsllame="EPSG:4326" xsi:schemalocation="http://ww.opengis.net/gml http://schemas.opengis.net/qml/3.1.1
/base/geometryPrimitives.xsd">

URL: http://localhost:8080/services/| WPS 2 send

Select or enter a request above and click the 'SEND' button. After processing, the Service response will be displayed below,

Figure 27. Sending an example request against the WPS

The response of the WPS will be displayed in the lower section:

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... %

console/client/index.xhtml v & | B~ Google aQvsa 3 &4 @ » =

€ @localhost:80

Choose:(wps 3 || geometry Bufferxml = add request | save

delete request

<wps: Exe(ute xmlns:wps="hTtp: //www.0pengis.net/wps/1.0.0" xmins:xLink="NTtp://www.w3.0rg/1999/xTink"
xmins :xsi="http://wiw.w3.0rg/2001/XMLSchema- instance” xmlns :ows="http://w.0pengis. net/ows/1.1" service="wps"
version="1 0 0" xsi:schemalocation="http://www.opengis.net/wps/1.8.0 http://schemas.opengis.net/wps/1.0.0
/wpsExecute_request.xsd"s
<ows:Identifier>Buffer</ows: Identifier>
<wps:Datalnputs>
<wps:Input>
<ows: Identifier>GHLInput</ows: Identifier>
<wps :Data>
<wps : ComplexData>
<Curve xmlns="http://ws.opengis.net/gnl” xmins:g
srshame="EPSG:4326" xsi:schemaLocation="http://ww.opengis.net/gul ht
/base/geometryPrimitives.xsd">

ttp:/ /. opengis.net/gml” gmil:id="c1"
://schenas. opengis.net/gnl/3.1.1

URL: hitp:/localost:8080/services/| Wps send

downioad response

<wps:ExecuteResponse service="WPS" version="1.0.0" xml:lang="en" xsi: schemaLocatlon*“http.
/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" servicelnstanc
[services/wps?service=WPS&amp;request=GetCapabilities&amp;version=1.0.0" xmins:wps="http:;
fwps/1.0.0" xmins:ows="http://www.opengis.net/ows/1.1" xmins:ogc="http:
fhwww.opengis.net/ogc” xmins:xlink="http://www.w3.0rg/1999/xlink" xmIns:xsi="http://www.w3.org
[2001/XMLSchema-instance">
<wps:Process wps:processVersion="1.0.0">
<ows:ldentifier>Buffer</ows:Identifier>
<ows:Title>Process for creating a buffer around a GML geometry.</ows:Title>
<ows:Abstract>The purpose of this process is to create a buffer around an existing geometry
distance specified by the user.</ows:Abstract>
</wps:Process>
<wps:Status creationTime="2014-08-08T09:55:25.047Z"> o

Figure 28. WPS response is displayed

Besides the geometry example processes, the parameter example process and example requests
may be interesting to developers who want to learn development of WPS processes with deegree
webservices:

32



Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... %

/console/client/index.xht v | |8~ coogle avsa 38 &4 @ » =

€ @localhost:80

Choose:| Wps = || parameter - DescribeAll.xml i
save request | delete request

<DescribeProcess xmlns="http://ww.0pengis.net/wps/1.0.0" xmins:xLink="Nttp://ww.w3.0rg/1999/xLink"
xmlns :xsi="http://www.w3.0rg/2061/XMLSchena- instance” xmlns:ows="http://ww.opengis.net/ows/1.1"
xsi:schemalocation="http://ww.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0
/wpsDescribeProcess_request.xsd" service="WPS® version="1.8.0" language="en"s

<ows: Identi fier>ALL</ows : Identifier>
</DescribeProcess>

URL: http://localhost:8080/services/| WPS 2 send

download response

<wps:ProcessDescriptions service="WPS" version="1.0.0" xml:lang="en" xsi:schemaLocation="htl
/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsDescribeProcess_response.xsd" xmIns:wps="H
/iwww.opengis.net/wps/1.0.0" xmIns:ows="http://Wwww.opengis.net/ows/1.1" xmins:ogc="http:
/iwww.opengis.net/ogc” xmlins:xlink="http:/fwww.w3.0rg/1999/xlink" xmIns:xsi="http://www.w3.org/
instance">
<ProcessDescription wps:processVersion="1.0.0" storeSupported="true" statusSupported="fals

<ows:ldentifier>Intersection</ows:ldentifier>

<ows:Title>Determining the intersection points between two GML Geometries. </ows:Title>

<ows:Abstract>The intersection of two Geometries A and B is the set of all points which lie in
B.</ows:Abstract>

<Datalnputs>

<Input minOccurs="1" maxOccurs="1">
ows:ldentifier>GMLInputl </ows:ldentifier> v

Figure 29. Example requests for the parameter demo process

The process has four input parameters (literal, bounding box, xml and binary) that are simply
piped to four corresponding output parameters. There’s practically no process logic, but the
included example requests demonstrate many of the possibilities of the WPS protocol:

Input parameter passing variants (inline vs. by reference)

Output parameter handling (inline vs. by reference)

Response variants (ResponseDocument vs. RawData)

Storing of response documents

Asynchronous execution

Generic OGC Web Service Client - Mozilla Firefox

Generic OGC Web Servi... x
)/console/client/index.xhtml v €| [+ Google aQ&+Be & A @ » =

€ ) @localhost

Choose:| Wps - || parameter - ParameterDemoQutputsAsReferences.xml

saverequest | delete request

te xmins:wps="http://wwW.0pengis.net/wps/1.0.0" xmlns:xLink="http://uww.w3.0rg/1999/x1ink"
ttp:/ /wew.w3.0rg/2001/XMLSchena- instance” xmlns:ows="http://w.opengis.net/ows/1.1" service="WPS"
.0.0" xsi:schemalocation="http://ww.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0
/wpsExecute_request.xsd">

.

Executes the ParameterDemoProcess with complex output parameters stored as web-accessible resources
The complex output parameters contain only an href attribute where the output can be retrieved.
>

<ows:Identifier-ParameterDemoProcess</ows: Identifier>
<wps :Datalnputs>
<wps: Input>
<ows: IdentifiersLiteralInput</ows :Identifiers

URL: http://localhost:8080/services!| WPS S send

download response

<wps:ExecuteResponse service="WPS" version="1.0.0" xml:lang="en" xsi:;schemalocation="http:,
/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsExecute_response.xsd" servicelnstance="http
Iservices/wps?service=WPS&amp;request=GetCapabilities&amp;version=1.0.0" xmins:wps="http:,
fwps/1.0.0" xmIns:ows="http://www.opengis.net/ows/1.1" xmIns:ogc="http:
fiwww.opengis.net/ogc" xmins:xlink="http://www.w3.0rg/1999/xlink" xmIns:xsi="http://www.w3.org
/2001/XMLSchema-instance">
<wps:Process wps:processVersion="1.0.0">
<ows:ldentifier>ParameterDemoProcess</ows:Identifier>
<ows:Title>Process for demonstrating the use of different types of input and output paramet
<ows:Abstract>The purpose of this process is to provide a demonstration for the use of diffel
output parameter types in a deegree 3 WPS process.</ows:Abstract>
</wps:Process>
<wps:Status creationTime="2014-08-08T09:56:13.704Z"> s

Figure 30. Example requests for the ParameterDemo process

WPS request types and their format are specified in the OGC Web Processing Service

TIP e
specification.

33


http://www.opengeospatial.org/standards/wps
http://www.opengeospatial.org/standards/wps

34

TIP

In order to add your own processes, see Web Processing Service (WPS) and Process
providers.



Chapter 4. Configuration basics

In the previous chapter, you learned how to access and log in to the deegree service console and
how to download and activate example workspaces. This chapter introduces the basic concepts of
deegree webservices configuration:

» The deegree workspace and the active workspace directory

» Workspace files and resources

* Workspace directories and resource types

» Resource identifiers and dependencies

Usage of the service console for workspace configuration

The final section of this chapter describes recommended practices for creating your own
workspace. The remaining chapters of the documentation describe the individual workspace
resource formats in detail.

4.1. The deegree workspace

The deegree workspace is the modular, resource-oriented and extensible configuration concept
used by deegree webservices. The following diagram shows the different types of resources that it
contains:

/- deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS) Processes

- /

Figure 31. Configuration aspects of deegree workspaces

The following table provides a short description of the different types of workspace resources:

35



Resource type
Web Services
Data Stores (Coverage)

Data Stores (Feature)

Data Stores (Metadata)

Data Stores (Tile)

Map Layers (Layer)

Map Layers (Style)

Map Layers (Theme)
Processes

Server connections (JDBC)

Server connections (remote
OWS)

Description
Web services (WFS, WMS, WMTS, CSW, WPS)
Coverage (raster) data access (GeoTIFFs, raster pyramids, etc.)

Feature (vector) data access (Shapefiles, PostGIS, Oracle Spatial,
etc.)

Metadata record access (ISO records stored in PostGIS, Oracle, etc.)

Pre-rendered map tiles (GeoTIFF, image hierarchies in the file
system, etc.)

Map layers based on data stores and styles
Styling rules for features and coverages
Layer trees based on individual layers
Geospatial processes for the WPS
Connections to SQL databases

Connections to remote OGC web services

Physically, every configured resource corresponds to an XML configuration file in the active

workspace directory.

4.2. Dependencies of the deegree configuration files

The following diagram shows the different types of resources and their dependencies. The deegree
configuration can be divided into several sections:

e web services
e data stores
* map layers

e server connections

For example, to offer a Web Feature Service, a feature store (based on a shapefile, database, etc)
must be configured. With a rasterfile, like a GeoTIFF, you can configured a tile store and a coverage
store to offer a Web Map Service.

36



[S019139 Memory

Shapefile

GeoTiff Pyramid

Rasterfile
CachingTileStore

Coverage

|

Filesystem

Remote WMS
Remote OWS \
Remote WMTS

Figure 32. Workspace configuration dependencies

4.3. Location of the deegree workspace directory

The active deegree workspace is part of the .deegree directory which stores a few global
configuration files along with the workspace. The location of this directory depends on your
operating system.

4.3.1. Linux/Solaris/Mac OS X

On UNIX-like systems (Linux/Solaris/MacOS X), deegree’s configuration files are located in folder
<$HOME/.deegree/. Note that SHOME is determined by the user that started the web application
container that runs deegree. If you started the ZIP version of deegree as user "kelvin", then the

37



directory will be something like /home/kelvin/.deegree.

In order to use a different folder for deegree’s configuration files, you can set the
TIP system environment variable DEEGREE_WORKSPACE_ROOT. Note that the user
running the web application container must have read/write access to this directory.

4.3.2. Windows

On Windows, deegree’s configuration files are located in folder %USERPROFILE%/.deegree/. Note
that %USERPROFILE% is determined by the user that started the web application container that
runs deegree. If you started the ZIP version of deegree as user "kelvin", then the directory will be
something like C:|Users|kelvin|.deegree or C:|\Dokumente und Einstellungen|kelvin|.deegree.

In order to use a different folder for deegree’s configuration files, you can set the
TIP system environment variable DEEGREE WORKSPACE _ROOT. Note that the user
running the web application container must have read/write access to this directory.

4.3.3. Global configuration files and the active workspace

If you downloaded all four example workspaces (as described in Getting started), set a console
password and the proxy parameters, your .deegree directory will look like this:

Name
> deegree-workspace-csw
> deegree-workspace-inspire
g™ | deegree-workspace-utah
> deegree-workspace-wps
|=| console.pw
proxy.xml

webapps.properties
Figure 33. Example .deegree directory
As you see, this .deegree directory contains four subdirectories. Every subdirectory corresponds to a

deegree workspace. Besides the configuration files inside the workspace, three global configuration
files exist:

File name Function

<subdirectory> Workspace directory
console.pw Password for services console
proxy.xml Proxy settings
webapps.properties Selects the active workspace

Note that only a single workspace can be active at a time. The information on the active one is
stored in file webapps.properties.

38



Usually, you don’t need to care about the three files that are located at the top level of
this directory. The service console creates and modifies them as required (e.g. when

TIP

switching to a different workspace). In order to create a deegree webservices setup,

you will need to create or edit resource configuration files in the active workspace
directory. The remaining documentation will always refer to files in the (active)

workspace directory.

When multiple deegree webservices instances run on a single machine, every instance
TIP can use a different workspace. The file webapps.properties stores the active workspace
for every deegree webapp separately.

4.4. Structure of the deegree workspace directory

The workspace directory is a container for resource files with a well-defined directory structure.
When deegree starts up, the active workspace directory is determined and the following
subdirectories are scanned for XML resource configuration files:

Directory

services/
datasources/coverage/
datasources/feature/
datasources/metadata/
datasources/tile/
layers/

styles/

themes/

processes/

jdbc/
datasources/remoteows/

storedqueries/managed/

Resource type

Web services

Coverage Stores

Feature Stores

Metadata Stores

Tile Stores

Map Layers (Layer)

Map Layers (Style)

Map Layers (Theme)
Processes

Server Connections (JDBC)
Server Connections (Remote OWS)

Stored queries created via WFS interface

A workspace directory may contain additional directories to provide additional files along with the
resource configurations. The major difference is that these directories are not scanned for resource

files. Some common ones are:

Directory
appschemas/
data/

manager/

Used for
GML application schemas
Datasets (GML, GeoTIFF, ...)

Example requests (for the generic client)

39



4.4.1. Workspace files and resources

In order to clarify the relation between workspace files and resources, let’s have a look at an
example:

Name
v | deegree-workspace-csw
v || datasources
v | metadata
is019115.xml
v |[ idbc
connl.xml
> ||l manager
v |[g services

csw.xml
main.xml

metadata.xml

Figure 34. Example workspace directory
As noted, deegree scans the well-known resource directories for XML files (*xml) on startup (note
that it will omit directory manager, as it is not a well-known resource directory). For every file
found, deegree will check the type of configuration format (by determining the name of the XML
root element). If it is a recognized format, deegree will try to create and initialize a corresponding
resource. For the example, this results in the following setup:

* A metadata store with id iso19115

* A JDBC connection pool with id conni

* A web service with id csw

The individual XML resource formats and their options are described in the later chapters of the
documentation.

You may wonder why the main.xml and metadata.xml files are not considered as web
TIP service resource files. These two filenames are reserved and treated specifically. See
Web services for details.

The configuration format has to match the workspace subdirectory, e.g. metadata
TIP store configuration files are only considered when they are located in
datasources/metadata.

4.4.2. Resource identifiers and dependencies

It has already been hinted that resources have an identifier, e.g. for file jdbc/connl.xml a JDBC
connection pool with identifier connl is created. You probably have guessed that the identifier is
derived from the file name (file name minus suffix), but you may wonder what purpose the

40



identifier serves. The identifier is used for wiring resources. For example, an ISO metadata store
resource requires a JDBC pool, because it provides the actual connections to the SQL database.
Therefore, the corresponding resource configuration format has an element to specify it:

Example for wiring workspace resources

<ISOMetadataStore configVersion="3.4.0" xmlns=
"http://www.deegree.org/datasource/metadata/iso19115">

<!-- [1] Identifier of JDBC connection -->
<JDBCConnId>conn1</JDBCConnId>

</ISOMetadataStore>

In this example, the ISO metadata store is wired to JDBC connection pool connl. Many deegree
resource configuration files contain such references to dependent resources. Some resources
perform auto-wiring. For example, every CSW instance needs to connect to a metadata store for
accessing stored metadata records. If the CSW configuration omits the reference to the metadata
store, it is assumed that there’s exactly one metadata store defined in the workspace and deegree
will automatically connect the CSW to this store.

The required dependencies are specific to every type of resource and are documented

TIP . .
for each resource configuration format.

4.5. Using the service console for managing resources

As an alternative to dealing with the workspace resource configuration files directly on the
filesystem, you can also use the service console for this task. The service console has a
corresponding menu entry for every type of workspace resource. All resource menu entries are
grouped in the lower menu on the left:

41



deegree 3 console - Mozilla Firefox

deegree 3 console ER -

€ | @ localhost:8080 v & | B~ Google Qo8 & & @ » =

Security hint: No password has been set
Active workspace: deegree-workspace-wps  [Reload!

general Welcome to the deegree services console

Use the general menu on the left to

ctivate example configurations

send requests
see layers

webservices
services

data stores
coverage
teature
metadata
tile

map layers
layers For more information, piease refer to the official documentation.

styles
themes

connections
databases
remote services

processes
provider

Figure 35. Workspace resource menu entries

Although the console offers additional functionality for some resource types, the basic management
of resources is always identical.

4.5.1. Displaying configured resources

In order to display the configured workspace resources of a certain type, click on the corresponding
menu entry. The following screenshot shows the metadata store resources in deegree-workspace-
csw:

deegree 3 console - Mozilla Firefox

deegree 3 console x Wl

€ ) @ localhost:8080/console/generic/xmleditor.xt v & | B v Google awvsa &8 & @ » =

Security hint: No password has been set

Active workspace: deegree-workspace-csw  [Reload!
general Metadata stores
On is019115 Deactivate Infa Loader Setup table:
module info B Bmsy

send requests

see layers

webservices
sevices
data stores
coverage
feature
metadata
tile
map layers
layers
styles
themes
connections
databases
femote services
processes
provider

Figure 36. Displaying metadata store resources

The right part of the window displays a table with all configured metadata store resources. In this
case, the workspace contains a single resource with identifier "iso19115" which is in status "On".

4.5.2. Deactivating a resource

The "Deactivate" link allows to turn off a resource temporarily (while keeping the configuration):

42



deegree 3 console - Mozilla Firefox

deegree 3 console ER -

€ ) @ localhost:8080/console/generic/xmleditorxk v & | [Blv Google Q] ¥/ 88 ¥ #® & + »

Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload

general Metadata stores

send requests
see layers

webservices
services
data stores
coverage
teature
metadata
tile
map layers
layers
styles
themes
connections
databases
remote services
processes
provider

Figure 37. Deactivate action

After clicking on "Deactivate", the status of the resource will be "Off", and the "Deactivate" link will
change to "Activate". Also, the "Reload" link at the top will turn red to notify that there may be

changes that need to be propagated to dependent resources:

deegree 3 console - Mozilla Firefox

deegree 3 console * G
€ ) @localhost:8080/console/datastore/metadata v+ ¢ | [Blv Google Q@ ¥/ @B % A @~ »
Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload,
general Metadata stores
workspaces
, Off 5019115 Activate

Create new

send requests
see layers

webservices
sevices
data stores
coverage
feature
metadata
tile
map layers
layers
styles
themes
connections
databases
remote services
processes
provider

Figure 38. Deactivated a resource

When a resource is being deactivated, the suffix of the corresponding configuration
file is changed to ".ignore". Reactivating changes the suffix back to ".xml".

TIP

4.5.3. Editing a resource

By clicking on the "Edit" link, you can edit the corresponding XML configuration inside your

browser:

43



deegree 3 console - Mozilla Firefox

deegree 3 console x W
€ @localhost v¢|[Bvcooge QR E ¥ A G- » =
Security hint: No password has been set
Active workspace: deegree-workspacecsw  [Reload
general Metadata stores

workspaces
pro

password
module info

Create new
send requests
see layers

webservices

metadata
tile
map layers

processes
provider

Figure 39. Edit action

The XML configuration will be displayed:

deegree 3 console - Mozilla Firefox

deegree 3 console x W

€ @localhost ve|Brcooge QT $ A @ » =

Security hint: No password has been set

Active workspace: deegree-workspace-csw  [Reloac

jata.persistence. MetadataStoreProvider)

<JDBCConnId>conn1</JDBCConnId>

<Inspectors>
metadata
tile
map layers
IF y <FileTdentifierInspector
ayers

<InspireInspector

remote services
processes
provider

ceInspector

Figure 40. Editing a resource configuration

You can now perform configuration changes in the text area and click on "Save". Or click any of the
links:

 Display Schema: Displays the XML schema file for the resource configuration format.

 Cancel: Discards any changes.

* Turn on highlighting: Perform syntax highlighting.
If there are no (syntactical) errors in the configuration, the "Save" link will take you back to the

corresponding resource view. Before actually saving the file, the service console will perform an
XML validation of the file and display any syntactical errors:

44



deegree 3 console - Mozilla Firefox

deegree 3 console x W
€ @localhost v¢|[Bvcooge QR E ¥ A G- » =
Security hint: No password has been set
Active workspace: deegree-workspacecsw  [Reload
general
— Error near line 9, column 15 x

send requests
see layers

webservices
services

data stores
coverage
teature
metadata
tile

map layers <Inspectors>

layers
styles
themes

connections
datab

<FileIdentifierInspector

<InspireInspector

provider
<CoupledResourceInspector
</Inspectors>

Figure 41. Displaying a syntax error

In this case, the mandatory "JDBCConnld" element was removed, which violates the configuration
schema. This needs to be corrected, before "Save" will actually save the file to the workspace
directory.

4.5.4. Deleting a resource

The "Delete" link will deactivate the resource and delete the corresponding configuration file from
the workspace:

deegree 3 console - Mozilla Firefox

deegree 3 console LR -
€ @localhost vC [Bvcooge Q B ¥ A O » =
Security hint: No password has been set.
Active workspace: deegree-workspace-csw  [Reload
general Metadata stores
workspaces

module info Create new

webservices

coverage
feature
metadata
tile

map layers
layers

styles

theme:
conneci
datab:
remof
processes
provider

Figure 42. Delete action

4.5.5. Creating a new resource

In order to add a new resource, enter a new identifier in the text field, select a resource sub-type
from the drop-down and click on "Create new":

45



deegree 3 console - Mozilla Firefox

deegree 3 console ER -

€ ) @ localhost:8080/console/webservices/create v @ | B ¥ Google a&+rsa &8 & @ »

Security hint: No password has been set

Active workspace: deegree-workspace-csw  [Reload]

general Create new service

dentifier mywms

password

p Service type| WMS % XML config template| example 2
module info

Create new
send requests
see layers

webservices

semices

data stores
coverage
teature
metadata
tile

map layers

databases

remote services
processes

provider

Figure 43. Adding a WMS resource with identifier "mywms"

The next steps depend on the type of resource, but generally you have to choose between different
options and the result will be a new resource configuration file in the workspace.

4.5.6. Displaying error messages

One of the most helpful features of the console is that it can help to detect and fix errors in a
workspace setup. For example, if you delete (or deactivate) JDBC connection "connl1" in deegree-
workspace-csw and click "[Reload]", you will see the following:

deegree 3 console - Mozilla Firefox

deegree 3 console x Wl
€ ) @ localhost:8080/console/connection/sql/inde) v & | B ¥ Google Q&8 +$8 & ©- »
Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload
general SQL database connections

Create new

webservices
services !
data stores
coverage
feature
metadata !
tile
map layers
layers
styles
themes
connections
databases
femote services
processes
provider

Figure 44. Errors in resource categories

The red exclamation marks near "services" and "metadata” show that these resource categories
have resources with errors. Let’s click on the metadata link to see what’s going on:

46



deegree 3 console - Mozilla Firefox

deegree 3 console ER -

€ ) @ localhost:8080/console/datastore/metadata v @ | B~ Google Q&8s &+ & @ » =

Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload

general Metadata stores

! is019115 Show errors

Create new

send requests
see layers

webservices
services
data stores
coverage
teature
metadata t
tile
map layers
layers
styles
themes
connections
databases
remote services
processes
provider

Figure 45. Resource "iso19115" has an error

The metadata resource view reveals that the metadata store "iso19115" has an error. Clicking on
"Show errors" leads to:

deegree 3 console - Mozilla Firefox

deegree 3 console =
€ ) @ localhost:8080/console/datastore/metadata ~ & | B~ Google avsa 38 & @ » =
Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload,

general
w E3 nitialization of resource 'is019115' failed: Dependent resource E
ConnectionProviderProvider:conni failed to initialize.

o Metadata stores
send requests

see layers ! is019115 Show errors

webservices Create new
sevices
data stores
coverage
feature
metadata t
tile
map layers
layers
styles
themes
connections
databases
femote services
processes
provider

Figure 46. Details on the problem with "iso19115"

The error message gives an important hint: "No JDBC connection pool with id 'connl' defined."
deegree was unable to initialize the metadata store, because it refers to a JDBC connection pool
"connl". You may wonder what the error in the services category is about:

47



deegree 3 console - Mozilla Firefox

deegree 3 console ER -

€ ) @ localhost:8080/console/webservices/index.x| v @ | B+ Google Q&8s &+ & @ » =

Security hint: No password has been set
Active workspace: deegree-workspace-csw  [Reload
E3 Initialization of resource 'csw’ failed: Unable to build resource x
OWSProvider:csw: There is no MetadataStore configured, ensure
that exactly one store is available!

Web services

EditMetadata  Showerrors

coverage
feature

provider

Figure 47. Details on the problem with "csw"

As you see, the problem with the service resource ("There is no MetadataStore configured, ensure
that exactly one store is available!) is actually a consequence of the other issue. Because deegree
couldn’t initialize the metadata store, it was also unable to start up the CSW correctly. If you add a
new JDBC connection "connl1" and click on "[Reload]", both problems should disappear.

4.5.7. Resource type specific actions

In addition to the common management functionality, some resource views offer additional
actions. This is described in the corresponding chapters, but here’s a short overview:

* Web Services: Display service capabilities ("Capabilities"), edit service metadata ("Edit
metadata"), edit controller configuration ("Edit global config")

» Feature Stores: Display feature types and number of stored features ("Info"), Import GML
feature collections ("Loader"), Mapping wizard ("Create new" SQL feature store)

* Metadata Stores: Import metadata sets ("Loader"), create database tables ("Setup tables")

» Server Connections (JDBC): Test database connection ("Test")

4.6. Best practices for creating workspaces

This section provides some hints for creating a deegree workspace.

4.6.1. Start from example or from scratch

For creating your own workspace, you have two options. Option 1 is to use an existing workspace
as a template and adapt it to your needs. Option 2 is to start from scratch, using an empty
workspace. Adapting an existing workspace makes a lot of sense if your use-case is close to the
scenario of the workspace. For example, if you want to set up INSPIRE View and Download
Services, it is a good option to use Example workspace 1: INSPIRE Network Services as a starting
point.

48



In order to create a new workspace, simply create a new directory in the .deegree directory.

Name

2 deegree-workspace-csw

2 deegree-workspace-inspire
> deegree-workspace-utah

[ deegree-workspace-wps

myscenario|

h -| console.pw

proxy.xml

webapps.properties
Figure 48. Creating the new workspace myscenario

Afterwards, switch to the new workspace using the services console, as described in Downloading
and activating example workspaces.

4.6.2. Find out which resources you need

The first step is to identify the types of workspace resources that you need for your use-case. You
probably know already which types of services your setup requires. The next step is to identify the
dependencies for every service by having a look at the respective chapter in the documentation.
Let’s say you want a setup with a transactional WFS, a WMS and a CSW:

* A WFS instance requires 1..n feature stores

* A WMS instance requires 1..n themes

* A CSW instance requires a single metadata store
Now you have to dig deeper: What kinds of feature stores exist? Maybe you will find out that what
you want is an SQL feature store. So you read the respective part of the documentation and see that
an SQL feature store requires a JDBC connection pool resource. Do the same research for the WMS
dependencies. A WMS depends on a theme. Find out what a theme is and what it requires. In short,
you have to answer the following questions for every encountered resource:

* What does resource do?

* How is it configured?

* On which resources does this resource depend?

At the end of this process you should know about the resources that you will have to configure for
your setup.

49



Alternatively, you can approach the resources question bottom-up. Let’s say you have
your data ready in a PostGIS database. You want to visualize it using a WMS. So you
would require a JDBC resource pool that connects to your database. You need a simple
SQL feature store (or an SQL feature store) that uses the new connection pool. You
create one or more feature layers that are wired to the feature store and a theme
based on the layers. At the end of the chain is the WMS resource which has to be
configured to use the theme resource. Rendering styles can be created later
(references have to be added to the layers configuration).

TIP

4.6.3. Use a validating XML editor

All deegree XML configuration files have a corresponding XML schema, which allows to detect
syntactical errors easily. The editor built into the services console performs validation when you
save a configuration file. If the contents is not valid according to the schema, the file will not be
saved, but an error message will be displayed:

deegree 3 console - Mozilla Firefox

deegree 3 console x W

€ Blocalhost e|H-coge Q TE $ A @ » =

Security hint: No password has been set

Active workspace: deegree-workspace-csw  [Reloac

general
workspaces Error near line 9, column 15 x

es

data stores
coverage
feature

tile

layers
styles
themes

<FileIdentifierInspector
connections
d

<InspireInspector

processes
provider

ResourceInspector

Figure 49. The services console displays an XML syntax error

If you prefer to use a different editor for editing deegree’s configuration files, it is highly
recommended to choose a validating XML editor. Successfully tested editors are Eclipse and Altova
XML Spy, but any schema-aware editor should work.

In case you are able to understand XML schema, you can also use the schema file to
TIP find out about the available config options. deegree’s schema files are hosted at
http://schemas.deegree.org.

4.6.4. Check the resource status and error messages

As pointed out in Displaying error messages, the service console indicates errors if resources
cannot be initialized. Here’s an example:

50


http://schemas.deegree.org

deegree 3 console - Mozilla Firefox

deegree 3 console x W

€  @localhost vc&|B-c < Qo8 & & @ » =

Security hint: No password has been set

Active workspace: deegree-workspace-osw (R

general

E3 itialization of resource 'is019115' failed: Dependent resource x
ConnectionProviderProvider:connl failed to initialize.

Metadata stores

19115 Show errors

Create new

Figure 50. Error message

In this case, it was not possible to initialize the JDBC connection (and the resources that depend on
it). You can spot resource categories and resources that have errors easily, as they have a red
exclamation mark. Click on the respective resource level and on "Errors" near the broken resource
to see the error message. After fixing the error, click on "Reload" to re-initialize the workspace. If
your fix was successful, the exclamation mark will be gone.

Additional information can be found in the deegree log. If you’re running the ZIP version, switch to
the terminal window. When initializing workspace resources, information on every resource will
be logged, along with error messages.

Terminal

Figure 51. Log messages in the deegree log

If you deployed the WAR file, the location of the deegree log depends on your web
TIP application container. For Tomcat, you will find it in file catalina.out in the logs/
directory.

More logging can be activated by adjusting file log4j2.properties in the /WEB-
TIP INF/classes/ directory of the deegree web application. See chapter Logging
configuration for more information how to configure the logging framework.

51



Chapter 5. Web services

This chapter describes the configuration of web service resources. You can access this configuration
level by clicking the web services link in the administration console. The corresponding
configuration files are located in the services/ subdirectory of the active deegree workspace
directory.

/_ deegree workspace \

Web Services
(WFS, WMS, WMTS, CSW, WPS)

Data Stores Map Layers
(Coverage, Feature, Metadata, Tile) (Layers, Themes, Styles)

Server Connections
(JDBC, RemoteOWS)

- /

Figure 52. Web services are the top-level resources of the deegree workspace

Processes

The identifier of a web service resource has a special purpose. If your deegree
instance can be reached at http:/localhost:8080/deegree-webservices, the common
endpoint for connecting to your services is http://localhost:8080/deegree-webservices/
services. However, if you define multiple service resources of the same type in your

TIP workspace (e.g. two WMS instances with identifiers wms1 and wms2), you cannot use
the common URL, as deegree cannot determine the targeted WMS instance from the
request. In this case, simply append the resource identifier to the common endpoint
URL (e.g. http://localhost:8080/deegree-webservices/services/wmsZ2) to choose the service
resource that you want to connect to explicitly.

5.1. Web Feature Service (WFS)

A deegree WFS setup consists of a WFS configuration file and any number of feature store
configuration files. Feature stores provide access to the actual data (which may be stored in any of
the supported backends, e.g. in shapefiles or spatial databases such as PostGIS or Oracle Spatial). In
transactional mode (WFS-T), feature stores are also used for modification of stored features:

32


http://localhost:8080/deegree-webservices
http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services
http://localhost:8080/deegree-webservices/services/wms2

/— deegree workspace \

| |

\ J Y Y
Feature Store 1 Feature Store 2 Feature Store n

. /)

Figure 53. A WFS resource is connected to any number of feature store resources

5.1.1. Minimal example

The only mandatory option is QueryCRS, therefore, a minimal WFS configuration example looks
like this:

WES config example 1: Minimal configuration
<deegreeWFS configVersion="3.4.0"
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/services/wfs
http://schemas.deegree.org/services/wfs/3.4.0/wfs_configuration.xsd">

<QueryCRS>urn:ogc:def:crs:EPSG: :4258</QueryCRS>

</deegreelFS>

This will create a deegree WFS with the feature types from all configured feature stores in the
workspace and urn:ogc:def:crs:EPSG::4258 as coordinate system for returned GML geometries.

5.1.2. More complex example
A more complex configuration example looks like this:

WES config example 2: More complex configuration

<deegreeWFS configVersion="3.4.0"
xmlns="http://www.deegree.org/services/wfs"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wfs
http://schemas.deegree.org/services/wfs/3.4.0/wfs_configuration.xsd">

<SupportedVersions>

<Version>2.0.0</Version>
<Version>1.1.0</Version>

33



</SupportedVersions>

<SupportedRequests>
<SupportedEncodings>kvp</SupportedEncodings>
<GetCapabilities>
<SupportedEncodings>xml soap</SupportedEncodings>
</GetCapabilities>
<DescribeFeatureType/>
<GetFeature>
<SupportedEncodings>xml</SupportedEncodings>
</GetFeature>
</SupportedRequests>

<FeatureStoreld>inspire-ad</FeatureStoreld>

<EnableTransactions idGen="UseExisting">true</EnableTransactions>
<EnableResponseBuffering>false</EnableResponseBuffering>
<DisabledResources>

<Pattern>http://inspire.ec.europa.eu/codelist</Pattern>
</DisabledResources>

<QueryCRS>urn:ogc:def:crs:EPSG: :4258</QueryCRS>
<QueryCRS>urn:ogc:def:crs:EPSG::4326</QueryCRS>
<QueryMaxFeatures>-1</QueryMaxFeatures>

<QueryCheckAreaOfUse>false</QueryCheckAreaOfUse>

<GMLFormat gmlVersion="GML_32">
<MimeType>application/gml+xml; version=3.2</MimeType>
<MimeType>text/xml; subtype=gml/3.2.1</MimeType>
<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>
<GetFeatureResponse xmlns:gml="http://www.opengis.net/gml/3.2">
<ContainerElement>gml:FeatureCollection</ContainerElement>
<FeatureMemberElement>gml: featureMember</FeatureMemberElement>
<AdditionalSchemalocation>http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemalocation>
<DisableStreaming>false</DisableStreaming>
<PrebindNamespace prefix="ad" uri="urn:x-
inspire:specification:gmlas:Addresses:3.0"/>
<PrebindNamespace prefix="base" uri="urn:x-
inspire:specification:gmlas:BaseTypes:3.2"/>
<PrebindNamespace prefix="xlink" uri="http://www.w3.0rg/1999/x1ink"/>
</GetFeatureResponse>
</GMLFormat>

</deegreeWFS>

5.1.3. Configuration overview

The deegree WFS config file format is defined by schema file http://schemas.deegree.org/services/

54


http://schemas.deegree.org/services/wfs/3.4.0/wfs_configuration.xsd

wifs/3.4.0/wfs_configuration.xsd. The root element is <deegreeWFS> and the config attribute must be
3.4.0. The following table lists all available configuration options (complex ones contain nested
options themselves). When specifiying them, their order must be respected.

Option Cardinal Value Description

ity
SupportedVersions 0.1

e
5

FeatureStoreld

EnableTransactions 0.1

e
—_

EnableResponseBuffer
ing

DisabledResources 0.1

e
—_

EnableResponsePagin
g

SupportedRequests 0..1

QueryCRS 1.n

QueryMaxFeatures 0.1

ResolveTimeOutInSec 0..1
onds

QueryCheckAreaOfUse 0..1

StoredQuery 0.n
ExtendedCapabilities 0..n
GMLFormat 0.n
CustomFormat 0.n
Strict 0.1

Compl
ex

String

Compl
ex

Boolea
n

Compl
ex

Boolea
n

Compl
ex

String

Intege
r

Intege
r

Boolea
n

String

String

Compl
ex

Compl
ex

Boolea
n

Activated OGC protocol versions, default: all

Feature stores to attach, default: all

Enable transactions (WFS-T operations), default: false

Enable response buffering (expensive), default: false

Disables resolve of xlink:href attribute references

Enable response paging (WFS 2.0.0 option), default:
false

Configuration of WFS requests

Announced CRS, first element is the default CRS

Limit of features returned in a response, default: 15000

Expiry time in seconds

Check spatial query constraints against CRS area,
default: false

File name of StoredQueryDefinition

Extended Metadata reported in GetCapabilities
response

GML format configuration

Custom format configuration

Indicates if the server should behave strictly as
specified. default: false

The remainining sections describe these options and their sub-options in detail.

5.1.4. General options

» SupportedVersions: By default, all implemented WFS protocol versions (1.0.0, 1.1.0 and 2.0.0) will
be activated. You can control offered WFS protocol versions using element SupportedVersions.

55


http://schemas.deegree.org/services/wfs/3.4.0/wfs_configuration.xsd

This element allows any combination of the child elements <Version>1.0.0</Version>,
<Version>1.1.0</Version> and <Version>2.0.0</Version>.

* FeatureStoreld: By default, all feature stores in your deegree workspace will be used for serving
feature types. In some cases, this may not be what you want, e.g. because you have two different
WES instances running, or you don’t want all feature types used in your WMS for rendering to
be available via your WES. Use the FeatureStoreld option to explicitly set the feature stores that
this WES should use.

* EnableResponseBuffering: By default, WFS responses are directly streamed to the client. This is
very much recommended and even a requirement for transferring large responses efficiently.
The only drawback happens if exceptions occur, after a partial response has already been
transferred. In this case, the client will receive part payload and part exception report. By
specifying true here, you can explicitly force buffering of the full response, before it is written to
the client. Only if the full response could be generated successfully, it will be transferred. If an
exception happens at any time the buffer will be discarded, and an exception report will be sent
to the client. Buffering is performed in memory, but switches to a temp file in case the buffer
grows bigger than 1 MiB.

* DisabledResources: By default all xlink:href attribute references are tried to resolved as feature
references during insert. This can be avoided by configuring one or multiple base url patterns
within the child element Pattern. Pattern can occur multiple times, one for each base url. In the

complex example above resolving of http://inspire.ec.europa.eu/codelist/
DesignationSchemeValue/natura2000 and http://inspire.ec.europa.eu/codelist/
Natura2000DesignationValue/specialProtectionArea is disabled, but not
https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000 and http.//deegree.org/
external/feature.

* EnableResponsePaging: By default, WFS 2.0.0 does not support response paging. By specifying
true here, you can explicitly enable response paging. Response Paging works only when
streaming is disabled. Currently @next and @previous URLs bases on the original GetFeature
request in KVP encoding.

* QueryCRS: Coordinate reference systems for returned geometries. This element can be specified
multiple times, and the WFS will announce all CRS in the GetCapabilities response (except for
WFS 1.0.0 which does not officially support using multiple coordinate reference systems). The
first element always specifies the default CRS (used when no CRS parameter is present in a
request).

* QueryMaxFeatures: By default, a maximum number of 15000 features will be returned for a
single GetFeature request. Use this option to override this setting. A value of -1 means unlimited.

* ResolveTimeOutInSeconds: Use this option to specify a default value for ResolveTimeOut, used in
GetFeature request if the ResolveTimeOut option is not set.

* QueryCheckAreaOfUse: By default, spatial query constraints are not checked with regard to the
area of validity of the CRS. Set this option to true to enforce this check.

5.1.5. Transactions

By default, WFS-T requests will be rejected. Setting the EnableTransactions option to true will
enable transaction support. This option has the optional attribute idGenMode which controls how
ids of inserted features (the values in the gml:id attribute) are treated. There are three id generation

36


http://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
http://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
http://inspire.ec.europa.eu/codelist/Natura2000DesignationValue/specialProtectionArea
http://inspire.ec.europa.eu/codelist/Natura2000DesignationValue/specialProtectionArea
https://inspire.ec.europa.eu/codelist/DesignationSchemeValue/natura2000
http://deegree.org/external/feature
http://deegree.org/external/feature

modes available:

» UseExisting: The original gml:id values from the input are stored. This may lead to errors if the
provided ids are already in use.

» UseExistingResolvingReferencesInternally: Same as UseExisting, but it is allowed to insert
features with references to already inserted features.

» UseExistingSkipResolvingReferences: Same as UseExisting, but references to features are not
checked. The user is fully responsible of the data integrity!

* GenerateNew (default): New and unique ids are generated. References in the input GML
(xlink:href) that point to a feature with an reassigned id are fixed as well, so reference
consistency is maintained.

* ReplaceDuplicate: The WEFS will try to use the original gml:id values that have been provided
in the input. In case a certain identifier already exists in the backend, a new and unique
identifier will be generated. References in the input GML (xlink:href) that point to a feature
with an reassigned id are fixed as well, so reference consistency is maintained.

Currently, transactions can only be enabled if your WFS is attached to a single

NOTE
feature store.

Not every feature store implementation supports transactions, so you may
NOTE encounter that transactions are rejected, even though you activated them in the
WES configuration.

The details of the 1id generation depend on the feature store

NOTE . . . .
implementation/configuration.

In a WFS 1.1.0 insert, the id generation mode can be overridden by attribute
NOTE idGenMode of the Insert element. WFS 1.0.0 and WFS 2.0.0 don’t support to specify
the id generation mode on a request basis.

When a feature is replaced the UseExisting option is always activated for that
NOTE transaction. The gml:id of the feature is used for the new version of the feature. The
filter is used to identify the feature to be replaced.

5.1.6. SupportedRequests

This option can be used to configure the supported request types. Currently the supported
encodings can be specified for each request type. If the option is missing all encodings are
supported for each request type. The option has the following sup-options:

Option Cardi Val Description

nalit ue

y
SupportedE 0.1  Stri Enable encodings for all configured request types. Allowed values: 'kvp',
ncodings ng ‘'xml), 'soap'. Multiple values must be separated by a white space.

57



Option Cardi Val Description
nalit ue

y

GetCapabilit 0..1
ies

DescribeFea 0..1
tureType

GetFeature 0..1

Transaction 0..1

GetFeature 0..1
WithLock

GetGmlObje 0..1
ct

LockFeature 0..1

GetProperty 0.1
Value

CreateStored 0..1
Query

DropStored 0..1
Query

ListStoredQ 0..1
ueries

DescribeStor 0..1
edQueries

Co Configuration of GetCapabilities requests
mpl
ex

Co Configuration of DescribeFeatureType requests
mpl
ex

Co Configuration of GetFeature requests
mpl
ex

Co Configuration of Transaction requests
mpl
ex

Co Configuration of GetFeatureWithLock requests
mpl
ex

Co Configuration of GetGmlObject requests
mpl
ex

Co Configuration of LockFeature requests
mpl
ex

Co Configuration of GetPropertyValue requests
mpl
ex

Co Configuration of CreateStoredQuery requests
mpl
ex

Co Configuration of DropStoredQuery requests
mpl
ex

Co Configuration of ListStoredQueries requests

mpl

ex

Co Configuration of DescribeStoredQueries requests
mpl

ex

Each request type has the following sup-option:

38



Option Cardi Val Description
nality ue

SupportedE 0..1 Stri Enable encodings for this request types. Allowed values: 'kvp', 'xml',
ncodings ng ‘'soap'. Multiple values must be separated by a white space.

By default deegree will provide all supported request types with all available encodings (kvp, xml,
soap).

If a single supported request or encoding is configured, all non configured requests or encodings
are disabled.

Example: To limit the provided request types to GetCapabilities and GetFeature this request types
can be added without SupportedEncodings sub-option:

<SupportedRequests>
<GetCapabilities />
<GetFeature />

</SupportedRequests>

Example: To disable SOAP encoding the other encodings can be added without SupportedRequests
sub-option:

<SupportedRequests>
<SupportedEncodings>kvp xml</SupportedEncodings>
</SupportedRequests>

WARNING It is not checked if the configuration is valid against the WFS specification!

5.1.7. Adapting GML output formats

By default, a deegree WFS will offer GML 2, 3.0, 3.1, and 3.2 as output formats and announce those
formats in the GetCapabilities responses (except for WFS 1.0.0, as this version of the standard has
no means of announcing other formats than GML 2). The element for GetFeature responses is
wfs:FeatureCollection, as mandated by the WFS specification.

In some cases, you may want to alter aspects of the offered output formats. For example, if you
want your WFS to serve a specific application schema (e.g. INSPIRE Data Themes), you should
restrict the announced GML versions to the one used for the application schema. These and other
output-format related aspects can be controlled by element GMLFormat.

Example for WFS config option GMLFormat

39



<GMLFormat gmlVersion="GML_32">
<MimeType>text/xml; subtype=gml/3.2.1</MimeType>
<GenerateBoundedByForFeatures>false</GenerateBoundedByForFeatures>

<GetFeatureResponse>
<ContainerElement xmlns:gml="http://www.opengis.net/gml/3.2">
gml:FeatureCollection</ContainerElement>
<FeatureMemberElement xmlns:gml="http://www.opengis.net/gml/3.2">
gml:featureMember</FeatureMemberElement>
<AdditionalSchemalocation>
http://www.opengis.net/gml/3.2
http://schemas.opengis.net/gml/3.2.1/deprecatedTypes.xsd
</AdditionalSchemalocation>
<DisableDynamicSchema>true</DisableDynamicSchema>
<DisableStreaming>false</DisableStreaming>
<GeometrylLinearization>
<Accuracy>0.1</Accuracy>
</GeometrylLinearization>
</GetFeatureResponse>

<DecimalCoordinateFormatter places="8"/>

</GMLFormat>

The GMLFormat option has the following sub-options:

Option Cardinal Value Description
ity
@gmlVersion 1.1 Strin GML version (GML_2, GML_30, GML_31 or GML_32)
g
MimeType 1.n Strin Mime types associated with this format configuration
g
GenerateBoundedByF 0..1 Boole Forces output of gml:boundedBy property for every
orFeatures an feature
GetFeatureResponse 0.1 Comp Options for controlling GetFeature responses
lex
DecimalCoordinateFor 0..1 Comp Controls the formatting of geometry coordinates
matter/ lex
CustomCoordinateFor
matter
GeometryLinearizatio 0..1 Comp Activates/controls the linearization of exported
n lex  geometries

60



Basic GML format options

* @gmlVersion: This attribute defines the GML version (GML_2, GML_30, GML_31 or GML_32)

* MimeType: Mime types associated with this format configuration (and announced in
GetCapabilities)

* GenerateBoundedByForFeatures: By default, the gml:boundedBy property will only be exported
for the member features if the feature store provides it. By setting this option to true, the WFS
will calculate the envelope and include it as a gml:boundedBy property. Please note that this
setting does not affect the inclusion of the gml:boundedBy property for on the feature collection
level (see DisableStreaming for that).

GetFeature response settings

Option GetFeatureResponse has the following sub-options:

Option Cardinal Value Description
ity
ContainerElement 0..1 QName Qualified root element name, default:

wifs:FeatureCollection

FeatureMemberEle 0..1 QName Qualified feature member element name, default:

ment gml:featureMember

AdditionalSchemalL. 0..1 String  Added to xsi:schemaLocation attribute of

ocation wis:FeatureCollection

DisableDynamicSch 0..1 Comple Controls DescribeFeatureType strategy, default:

ema X regenerate schema

DisableStreaming 0..1 Boolea Disables output streaming, include numberOfFeature
n information/gml:boundedBy

PrebindNamespace 0..n Comple Pre-bind namespaces in the root element
X

» ContainerElement: By default, the container element of a GetFeature response is
wfs:FeatureCollection. Using this option, you can specify an alternative element name. In order
to bind the namespace prefix, use standard XML namespace mechanisms (xmlns attribute). This
option is ignored for WFS 2.0.0.

» FeatureMemberElement: By default, the member features are included in gmlfeatureMember
(WFS 1.0.0/1.1.0) or wfs:member elements (WFS 2.0.0). Using this option, you can specify an
alternative element name. In order to bind the namespace prefix, use standard XML namespace
mechanisms (xmlns attribute). This option is ignored for WFS 2.0.0.

» AdditionalSchemaLocation: By default, the xsi:schemalLocation attribute in a GetFeature
response is auto-generated and refers to all schemas necessary for validation of the response.
Using this option, you can add additional namespace/URL pairs for adding additional schemas.
This may be required when you override the returned container or feature member elements in
order to achieve schema-valid output.

* DisableDynamicSchema: By default, the GML application schema returned in

61



DescribeFeatureType reponses (and referenced in the xsi:schemaLocation of query responses)
will be generated dynamically from the internal feature type representation. This allows
generation of application schemas for different GML versions and is fine for simple feature
models (e.g. feature types served from shapefiles or flat database tables). However, valid re-
encoding of complex GML application schema (such as INSPIRE Data Themes) is technically not
feasible. In these cases, you will have to set this option to false, so the WFS will produce a
response that refers to the original schema files used for configuring the feature store. If you
want the references to point to an external copy of your GML application schema files (instead
of pointing back to the deegree WEFS), use the optional attribute baseURL that this element
provides.

* DisableStreaming: By default, returned features are not collected in memory, but directly
streamed from the backend (e.g. an SQL database) and individually encoded as GML. This
enables the querying of huge numbers of features with only minimal memory footprint.
However, by using this strategy, the number of features and their bounding box is not known
when the WFS starts to write out the response. Therefore, this information is omitted from the
response (which is perfectly valid according to WFS 1.0.0 and 1.1.0, and a change request for
WES 2.0.0 has been accepted). If you find that your WES client has problems with the response,
you may set this option to false. Features will be collected in memory first and the generated
response will include numberOfFeature information and gml:boundedBy for the collection.
However, for huge response and heavy server load, this is not recommended as it introduces
significant overhead and may result in out-of-memory errors.

* PrebindNamespace: By default, XML namespaces are bound when they are needed. This will
result in valid output, but may lead to the same namespace being bound again and again in
different parts of the response document. Using this option, namespaces can be bound in the
root element, so they are defined for the full scope of the response document and do not need
re-definition at several positions in the document. This

option has the required attributes prefix and uri. .. note

PrebindNamespaces must be configured as in used GML application schemas respectively
the imported features (at least for the BLOB mode). It is essential to ensure that prefixes are
bound to the same namespace URIs. Otherwise, a GetFeature request may result in a failure
("Duplicate declaration for namespace prefix").

Coordinate formatters

By default, GML geometries will be encoded using 6 decimal places for CRS with degree axes and 3
places for CRS with metric axes. In order to override this, two options are available:

* DecimalCoordinatesFormatter: Empty element, attribute places specifies the number of decimal
places.

* CustomCoordinateFormatter: By specifiying this element, an implementation of Java interface
org.deegree.geometry.io.CoordinateFormatter can be instantiated. Child element JavaClass
contains the qualified name of the Java class (which must be on the classpath).

Geometry linearization

Some feature stores (e.g. the SQL feature store when connected to an Oracle Spatial database) can

62



deliver non-linear geometries (e.g. arcs). Here’s an example for the GML 3.1.1 encoding of such a
geometry as it would be returned by the WES:

Example for a non-linear GML geometry

<gml:Polygon srsName="urn:ogc:def:crs:EPSG::28992">
<gml:exterior>
<gml:Ring srsName="urn:ogc:def:crs:EPSG::28992">
<gml:curveMember>
<gml:Curve srsName="urn:ogc:def:crs:EPSG::28992">
<gml:segments>
<gml:Arc>
<gml:poslList>240190.182 488008.760 240160.182 487978.760 240190.182

487948.760</gml:posList>

</gml:Arc>

<gml:Arc>

<gml:poslList>240190.182 487948.760 240220.182 487978.760 240190.182

488008.760</gml:posList>

</gml:Arc>

</gml:segments>
</gml:Curve>
</gml:curveMember>
</gml:Ring>
</gml:exterior>

</gml:Polygon>

This is perfectly valid GML, but there are two reasons why you may not want your WFS to return
non-linear GML geometries:

* There’s no encoding for non-linear GML geometries in GML version 2

 Currently available WES clients (e.g. QGIS, uDig, ...) cannot cope with them

Option GeometryLinearization will ensure that GML responses will only contain linear geometries.
Curves with non-linear segments and surfaces with non-linear boundary segments will be
converted before they are encoded to GML. Here’s an example usage of this GML format option:

Example config snippet for activating geometry linearization

<GeometrylLinearization>
<Accuracy>0.1</Accuracy>
</GeometrylLinearization>

GeometryLinearization has a single mandatory option Accuracy. It defines the numerical accuracy
of the linear approximation in units of the coordinate reference system used by the feature store. If

63



the coordinate reference system is based on meters, a value of 0.1 will ensure that the maximum
error between the original and the linearized geometry does not exceed 10 centimeters.

Here’s an example of a linearized version of the example geometry as it would be generated by the
WES:

Example for linearized GML output

<gml:Polygon srsName="urn:ogc:def:crs:EPSG::28992">
<gml:exterior>
<gml:Ring srsName="urn:ogc:def:crs:EPSG::28992">
<gml:curveMember>
<gml:Curve srsName="urn:ogc:def:crs:EPSG::28992">
<gml:segments>
<gml:LineStringSegment interpolation="1inear">
<gml:poslList>240190.182 488008.760 240177.165 488005.789 240166.727
487997.465 240160.934 487985.436 240160.934 487972.084 240166.727 487960.055
240177.165 487951.731 240190.182 487948.760</gml:posList>
</gml:LineStringSegment>
<gml:LineStringSegment interpolation="1inear">
<gml:poslist>240190.182 487948.760 240203.199 487951.731 240213.637
487960.055 240219.430 487972.084 240219.430 487985.436 240213.637 487997.465
240203.199 488005.789 240190.182 488008.760</gml:posList>
</gml:LineStringSegment>
</gml:segments>
</gml:Curve>
</gml:curveMember>
</gml:Ring>
</gml:exterior>
</gml:Polygon>

5.1.8. Adding custom output formats

Using option element CustomFormat, it is possible to plug-in your own Java classes to generate the
output for a specific mime type (e.g. a binary format)

Option Cardinality Value  Description

MimeType 1.n String  Mime types associated with this format configuration
JavaClass 1.1 String  Qualified Java class name

Config 0.1 Complex Value to add to xsi:schemaLocation attribute

* MimeType: Mime types associated with this format configuration (and announced in
GetCapabilities)

* JavaClass: Therefore, an implementation of interface
org.deegree.services.wfs.format.CustomFormat must be present on the classpath.

64



» Config:

5.1.9. Stored queries

Besides standard (‘ad hoc') queries, WES 2.0.0 introduces so-called stored queries. When WEFES 2.0.0
support is activated, your WFS will automatically support the well-known stored query
urn:ogc:def:storedQuery:OGC-WFS::GetFeatureByld (defined in the WFS 2.0.0 specification). It can be
used to query a feature instance by specifying it’s gml:id (similar to GetGmlObject requests in WFS
1.1.0). In order to define custom stored queries, use the StoredQuery element to specify the file
name of a StoredQueryDefinition file. The given file name (can be relative) must point to a valid
WES 2.0.0 StoredQueryDefinition file. Here’s an example:

Example for a WFS 2.0.0 StoredQueryDefinition file

<StoredQueryDefinition id="urn:x-inspire:query:GetAddressesForStreet"
xmlns="http://www.opengis.net/wfs/2.0"
xmlns:ad="urn:x-inspire:specification:gmlas:Addresses:3.0"
xmlns:gn="urn:x-inspire:specification:gmlas:GeographicalNames:3.0">
<Title>GetAddressesForStreet</Title>
<Abstract>Returns the ad:Address features located in the specified
street.</Abstract>
<Parameter name="streetName" type="xs:string">
<Abstract>Name of the street (mandatory)</Abstract>
</Parameter>
<QueryExpressionText returnFeatureTypes="ad:Address"
language="urn:ogc:def:queryLanguage:0GC-:WFSQueryExpression">
<Query typeNames="ad:Address">
<Filter xmlns="http://www.opengis.net/fes/2.0">
<PropertylIsEqualTo>
<ValueReference>
ad:component/ad:ThoroughfareName/ad:name/gn:GeographicalName/gn:spelling/gn:SpellingOf
Name/gn: text
</ValueReference>
<Literal>${streetName}</Literal>
</PropertyIskqualTo>
</Filter>
</Query>
</QueryExpressionText>
</StoredQueryDefinition>

This example is actually usable if your WES is set up to serve the ad:Address feature type from
INSPIRE Annex I. It defines the stored query urn:x-inspire:storedQuery:GetAddressesForStreet for
retrieving ad:Address features that are located in the specified street. The street name is passed
using parameter streetName. If your WFS instance can be reached at http:/localhost:8080/services,
you could use the request http://localhost:8080/services?request=GetFeature&storedquery_id=urn:x-
inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat to fetch the
ad:Address features in street Madame Curiestraat.

The attribute returnFeatureTypes of QueryExpressionText can be left empty. If this is the case, the

65


http://localhost:8080/services
http://localhost:8080/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat
http://localhost:8080/services?request=GetFeature&storedquery_id=urn:x-inspire:storedQuery:GetAddressesForStreet&streetName=Madame%20Curiestraat

element will be filled with all feature types served by the WFS when executing a
DescribeStoredQueries request. The same applies for the value $\{deegreewfs:ServedFeatureTypes}.
If a value is set for returnFeatureTypes, the user is responsible to configure it as expected: Usually
values of the typeNames of the Query-Elements should be used. An exception is thrown as
DescribeStoredQueries response, if the configured feature type is not served by the WFS.

To enable support for the Manage Stored Queries conformance class for WFS 2.0.0 it is required to
create a directory storedqueries/managed in your workspace. The stored queries created with
CreateStoredQuery requests are stored in this directory. They are loaded during startup of deegree
automatically. It is not recommend to put the StoredQueries configured in the WFS configuration
with the StoredQuery element into this folder. If the directory is missing the CreateStoredQuery
request returns an exception.

deegree WFS supports the execution of stored queries using GetFeature and
TIP GetPropertyValue  requests. It also implements the  ListStoredQueries,
DescribeStoredQueries, CreateStoredQuery and the DropStoredQuery operations.

5.1.10. Extended capabilities

Important for applications like INSPIRE, it is often desirable to include predefined blocks of XML in
the extended capabilities section of the WFS capabilities output. This can be achieved simply by
adding these blocks to the extended capabilities element of the configuration:

<ExtendedCapabilities>
<MyCustomOutput xmlns="http://www.custom.org/output">

</MyCustomOutput>
</ExtendedCapabilities>

You must set the attribute wfsVersions to indicate the version that you want to define the extended
capabilities for. If your service supports multiple protocol versions (e.g. a WFS that supports 1.1.0
and 2.0.0), you may include multiple ExtendedCapabilities elements in the metadata configuration.

The extended capabilities set in the WFS service configuration are ignored, if a
WARNING metadata configuration file (see chapter Metadata) exists. Instead, the
extended capabilities must be configured there.

5.2. Web Map Service (WMS)

In deegree terminology, a deegree WMS renders maps from data stored in feature, coverage and
tile stores. The WMS is configured using a layer structure, called a theme. A theme can be thought of
as a collection of layers, organized in a tree structure. What the layers show is configured in a layer
configuration, and how it is shown is configured in a style file. Supported style languages are
StyledLayerDescriptor (SLD) and Symbology Encoding (SE).

66



WMS

Theme 1 Theme 2 Theme n

Figure 54. A WMS resource is connected to exactly one theme resource

In order to fully understand deegree WMS configuration, you will have to learn
configuration of other workspace aspects as well. Chapter Map styles describes the

TIP creation of layers and styling rules. Chapter Feature stores describes the configuration
of vector data access and chapter Coverage stores describes the configuration of raster
data access.

5.2.1. Aword on layers and themes

Readers familiar with the WMS protocol might be wondering why layers can not be configured
directly in the WMS configuration file. Inspired by WMTS 1.0.0 we found the idea to separate
structure and content very appealing. Thinking of a layer store that just offers a set of layers is an
easy concept. Thinking of a theme as a structure that may contain layers at certain points also
makes sense. But when thinking of WMS the terms begin clashing. We suggest to avoid confusion as
much as possible by using the same name for each corresponding theme, layer and possibly even
tile/feature/coverage data sources. We believe that once you work a little with the concept of
themes, and seeing them exported as WMS layer trees, the concepts fit well enough so you can
appreciate the clean cut.

5.2.2. Configuration overview

The configuration can be split up in six sections. Readers familiar with other deegree service
configurations may recognize some similarities, but we’ll describe the options anyway, because
there may be subtle differences. A document template looks like this:

<?xml version='1.0'?>

<deegreeWMS xmlns="http://www.deegree.org/services/wms'>
<!-- actual configuration goes here -->

</deegreeWMS>

The following table shows what top level options are available.

67



Option Cardinal Value Description

ity
SupportedVersions 0..1 Comp Limits active OGC protocol versions
lex
SupportedRequests 0..1 Comp Configuration of WMS requests
lex
UpdateSequence 0..1 Integ Current update sequence, default: 0
er
MetadataStoreld 0..1 Strin Configures a metadata store to check if metadata ids for
g layers exist
MetadataURLTempl 0..1 Strin Template for generating URLs to feature type metadata
ate g
ServiceConfiguratio 1 Comp Configures service content
n lex
GetCapabilitiesForm 0..1 Comp Configures additional capabilities output formats
ats lex
FeatureInfoFormats 0..1 Comp Configures additional feature info output formats
lex
GetMapFormats 0..1 Comp Configures additional image output formats
lex
ExceptionFormats  0..1 Comp Configures additional exception output formats
lex
ExtendedCapabilitie 0..n Comp Extended Metadata reported in GetCapabilities response
S lex
LayerLimit 0..1 Integ Maximum number of layers in a GetMap request, default:
er unlimited
MaxWidth 0..1 Integ Maximum width in a GetMap request, default: unlimited
er
MaxHeight 0..1 Integ Maximum height in a GetMap request, default: unlimited
er
Strict 0..1 Boole Indicates if the server should behave strictly as specified.

an default: false

5.2.3. Basic options

* SupportedVersions: By default, all implemented WMS protocol versions (1.1.1 and 1.3.0) are
activated. You can control offered WMS protocol versions using the element SupportedVersions.
This element allows any of the child elements <Version>1.1.1</Version> and
<Version>1.3.0</Version>.

* MetadataStoreld: If set to a valid metadata store, the store is queried upon startup with all
configured layer metadata set ids. If a metadata set does not exist in the metadata store, it will

68



not be exported as metadata URL in the capabilties. This is a useful option if you want to
automatically check for configuration errors/typos. By default, no checking is done.

* MetadataURLTemplate: By default, no metadata URLs are generated for layers in the
capabilities. You can set this option either to a unique URL, which will be exported as is, or to a
template with a placeholder. In any case, a metadata URL will only be exported if the layer has a
metadata set id set. A template looks like this: http://discovery.eu/csw?service=CSW&
request=GetRecordByld&version=2.0.2&id=$%7BmetadataSetld%7D&outputSchema=http://
www.isotc211.0rg/2005/gmd&elementSetName=full. Please note that you’ll need to escape the &
symbols with & as shown in the example. The ${metadataSetld} will be replaced with the
metadata set id from each layer.

Here is a snippet for quick copy & paste:

<SupportedVersions>

<Version>1.1.1</Version>
</SupportedVersions>
<MetadataStoreId>mdstore</MetadataStoreld>
<MetadataURLTemplate>http://discovery.eu/csw?service=CSW&amp; request=GetRecordById&amp
;version=2.0.2&amp; id=${metadataSetId}&amp;outputSchema=http://www.isotc211.0rg/2005/g
md&amp; elementSetName=full</MetadataURLTemplate>

5.2.4. SupportedRequests

This option can be used to configure the supported request types. Currently, the supported
encodings can be specified for each request type. If the option is missing, all encodings are
supported for each request type. The option has the following sup-options:

Option Cardi Val Description

nalit ue

y
SupportedE 0.1  Stri Enable encodings for all configured request types. Allowed values: 'kvp',
ncodings ng ‘'xml), 'soap'. Multiple values must be separated by a white space.

GetCapabilit 0.1 Co Configuration of GetCapabilities requests

ies mpl
ex

GetMap 0.1 Co Configuration of GetMap requests
mpl
ex

GetFeaturel 0.1 Co Configuration of GetFeaturelnfo requests
nfo mpl
ex

DescribeLay 0.1 Co Configuration of DescribeLayer requests
er mpl
ex

69


http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full
http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full
http://discovery.eu/csw?service=CSW&request=GetRecordById&version=2.0.2&id=$%7BmetadataSetId%7D&outputSchema=http://www.isotc211.org/2005/gmd&elementSetName=full

Option Cardi Val Description

nalit ue
y
GetLegendG 0.1 Co Configuration of GetLegendGraphic requests
raphic mpl
ex

GetFeaturel 0.1 Co Configuration of GetFeatureInfoSchema requests

nfoSchema mpl
ex

DTD 0.1 Co Configuration of DTD requests
mpl
ex

Each request type has the following sup-option:

Option Cardi Val Description
nality ue

SupportedE 0..1 Stri Enable encodings for this request types. Allowed values: 'kvp', 'xml',
ncodings ng ‘'soap'. Multiple values must be separated by a white space.

By default deegree will provide all supported request types with all available encodings (kvp, xml,
soap).

If a single supported request or encoding is configured, all non configured requests or encodings
are disabled.

Example: To limit the provided request types to GetCapabilities and GetFeature this request types
can be added without SupportedEncodings sub-option:

<SupportedRequests>
<GetCapabilities />
<GetFeature />

</SupportedRequests>

Example: To disable SOAP encoding the other encodings can be added without SupportedRequests
sub-option:

<SupportedRequests>
<SupportedEncodings>kvp xml</SupportedEncodings>
</SupportedRequests>

WARNING It is not checked if the configuration is valid against the WMS specification!

70



WMS 1.1.1 just supports KVP. SOAP can only be used for GetCapabilities,

WARNING GetMap and GetFeatureInfo operations

configuration of all combinations is possible.

5.2.5. Service content configuration

You can configure the behaviour of layers using the DefaultLayerOptions element.

Have a look at the layer options and their values:

Option Cardi Stri

nality ng
Antialiasin 0..1 Stri
g ng
Rendering 0..1 Stri
Quality ng
Interpolati 0..1 Stri
on ng

MaxFeatur 0..1 Inte
es ger

FeatureInf 0..1 Inte
oRadius ger

Opaque 0.1 Boo
lea
n

Description

Whether to antialias NONE, TEXT, IMAGE or BOTH, default is BOTH
Whether to render LOW, NORMAL or HIGH quality, default is HIGH
Whether to use BILINEAR, NEARESTNEIGHBOUR or BICUBIC
interpolation, default is NEARESTNEIGHBOUR

Maximum number of features to render at once, default is 10000

Number of pixels to consider when doing GetFeaturelnfo, default is 1

Indicates if the map data of the layer are mostly or completely opaque
(true) or represents vector features that probably do not completely fill
space (false), default is false

of WMS 1.3.0. Nevertheless,

You can configure the WMS to use one or more preconfigured themes. In WMS terms, each theme is
mapped to a layer in the WMS capabilities. So if you use one theme, the WMS root layer

corresponds to the root theme. If you use multiple themes, a synthetic root layer is exported in the

capabilities, with one child layer corresponding to each root theme. The themes are configured
using the Themeld element.

Here is an example snippet of the content section:

<ServiceConfiguration>

<DefaultlLayerOptions>
<Antialiasing>NONE</Antialiasing>
</DefaultlLayerOptions>

<ThemeId>mytheme</ThemeId>

</ServiceConfiguration>

71



5.2.6. Custom capabilities formats

Any mime type can be configured to be available as response format for GetCapabilities requests,
although the most commonly used is probably text/html. A XSLT script is used to generate the
output.

This is how the configuration section looks like:

<GetCapabilitiesFormats>
<GetCapabilitiesFormat>
<XSLTFile>capabilities2html.xs1</XSLTFile>
<Format>text/html</Format>
</GetCapabilitiesFormat>
</GetCapabilitiesFormats>

Of course it is possible to define as many custom formats as you want, as long as you use a different
mime type for each (just duplicate the GetCapabilitiesFormat element). If you use one of the default
formats, the default output will be overridden with your configuration.

5.2.7. Custom feature info formats

Any mime type can be configured to be available as response format for GetFeaturelnfo requests,
although the most commonly used is probably text/html. There are two alternative ways of
controlling how the output is generated (besides using the default HTML output). One involves a
deegree specific templating mechanism, the other involves writing an XSLT script. The deegree
specific mechanism has the advantage of being considerably less verbose, making common use
cases very easy, while the XSLT approach gives you all the freedom.

This is how the configuration section looks like for configuring a deegree templating based format:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<File>../customformat.gfi</File>
<Format>text/html</Format>
<Property name="customname" value="customvalue" />
</GetFeatureInfoFormat>
</FeaturelnfoFormats>

The configuration for the XSLT approach looks like this:

<FeatureInfoFormats>
<GetFeatureInfoFormat>
<XSLTFile gmlVersion="GML_32">../customformat.xs1</XSLTFile>
<Format>text/html</Format>
<Property name="customname" value="customvalue" />
</GetFeatureInfoFormat>
</FeatureInfoFormats>

72



Of course it is possible to define as many custom formats as you want, as long as you use a different
mime type for each (just duplicate the GetFeaturelnfoFormat element). If you use one of the default
formats, the default output will be overridden with your configuration.

In order to write your XSLT script, yowll need to develop it against a specific GML version
(namespaces between GML versions may differ, GML output itself will differ). The default is GML
3.2, you can override it by specifying the gmiVersion attribute on the XSLTFile element. Valid GML
version strings are GML_2, GML_30, GML_31 and GML_32.

If you want to learn more about the templating format, read the following sections.

5.2.8. Featurelnfo templating format

The templating format can be used to create text based output formats for featureinfo output. It
uses a number of definitions, rules and special constructs to replace content with other content
based on feature and property values. Please note that you should make sure your file is UTF-8
encoded if you’re using umlauts.

Introduction/Example

This section gives a quick overview how the format works and demonstrates the development of a
small sample HTML output.

On top level, you can have a number of template definitions. A template always has a name, and
there always needs to be a template named start (yes, it’s the one we start with).

A simple valid templating file that does not actually depend on the features coming in looks like
this:

<?template start>

<html>

<body>
<p>Hello</p>

</body>

</html>

A featureinfo request will now always yield the body of this template. In order to use the features
coming in, you need to define other templates, and call them from a template. So let’s add another
template, and call it from the start template:

73



<?template start>

<html>

<body>

<ul>

<?feature *:myfeaturetemplate>
</ul>

</body>

</html>

<?template myfeaturetemplate>
<li>I have a feature</li>

What happens now is that first the body of the start template is being output. In that output, the
<?feature *:myfeaturetemplate> is replaced with the content of the myfeaturetemplate template for
each feature in the feature collection. So if your query hits five features, youw’ll get five li tags like in
the template. The asterisk is used to select all features, it’s possible to limit the number of objects
matched. See below in the reference section for a detailed explanation on how it works.

Within the myfeaturetemplate template you have switched context. In the start template your
context is the feature collection, and you can call feature templates. In the myfeaturetemplate you
'went down' the tree and are now in a feature context, where you can call property templates. So
what can we do in a feature context? Let’s start simple by writing out the feature type name.
Change the myfeaturetemplate like this:

<?template myfeaturetemplate>
<li>I have a <?name> feature</1i>

What happens now is that for each use of the myfeaturetemplate the <?name> part is being replaced
with the name of the feature type of the feature you hit. So if you hit two features, each of a
different type, you get two different li tags in the document, each with its name written in it.

So deegree only replaces the template call in the start template with its replacement once the
special constructs in the called template are all replaced, and all the special constructs/calls within
that template are all replaced, ... and so on.

Let’s take it to the next level. What’s you really want to do in featureinfo responses is of course get
the value of the features' properties. So let’s add another template, and call it from the
myfeaturetemplate template:

<?template myfeaturetemplate>
<1i>I have a <?name> feature and properties: <?property *:mypropertytemplate></1i>

<?7template mypropertytemplate>
<?7name>=<?value>

Now you also get all property names and values in the li item. Note that again you switched the

74



context in the template, now you are at property level. The <?name> and <?value> special
constructs yield the property name and value, respectively (remember, we’re at property level
here).

While that’s already nice, people often put non human readable values in properties, even property
names are sometimes not human readable. In order to fix that, you often have code lists mapping
the codes to proper text. To use these, there’s a special kind of template called a map. A map is like a
simple property file. Let’s have a look at how to define one:

<?map mycodelistmap>
codel=Street
code2=Highway
code3=Railway

<?map mynamecodelistmap>
tp=Type of way

Looks simple enough. Instead of template we use map, after that comes the name. Then we just map
codes to values. So how do we use this? Instead of just using the <?name> or <?value> we push it
through the map:

<?template mypropertytemplate>
<?name:map mynamecodelistmap>=<?value:map mycodelistmap>

Here the name of the property is replaced with values from the mynamecodelistmap, the value is
replaced with values from the mycodelistmap. If the map does not contain a fitting mapping, the
original value is used instead.

That concludes the introduction, the next section explains all available special constructs in detail.

Templating special constructs

This section shows all available special constructs. The selectors are explained in the table below.
The validity describes in which context the construct can be used (and where the description
applies). The validity can be one of top level (which means it’s the definition of something),
featurecollection (the start template), feature (a template on feature level), property (a template on
property level) or map (a map definition).

Construct Validity Description

<?template _name>_ top level defines a template with name name

<?map _name>_ top level defines a map with name name

<?feature featurecolle calls the template with name name for features matching the
selector:_name_>_  ction selector selector

<?property feature calls the template with name name for properties matching the
selector:__name_>_ selector selector

75



Construct
<?name>
<?name>

<?name:map
_name>_

<?name:map
_name>_

<?value>

<?value:map
_name>_
<?index>

<?index>

<?gmlid>

<?0dd:__name >_

<?o0dd:__name >_

<?even:.__name_>_

<?even:.__name_>_

<?link:_prefix_:>

Validity
feature

property

feature

property

property
property

feature

property

feature

feature

property

feature

property

property

<?link:_prefix_:__tex property

>

Description
evaluates to the feature type name
evaluates to the property name

uses the map name to map the feature type name to a value

uses the map name to map the property name to a value

evaluates to the property’s value

uses the map name to map the property’s value to another
value

evaluates to the index of the feature (in the list of matches from
the previous template call)

evaluates to the index of the property (in the list of matches
from the previous template call)

evaluates to the feature’s gml:id

calls the name template if the index of the current feature is
odd

calls the name template if the index of the current property is
odd

calls the name template if the index of the current feature is
even

calls the name template if the index of the current property is
even

if the value of the property is not an absolute link, the prefix is
prepended

the text of the link will be text instead of the link address

The selector for properties and features is a kind of pattern matching on the object’s name.

Selector
*

* text
text *

not(selector)

selectorl, selector2

Description

matches all objects

matches all objects with names ending in text
matches all objects with names starting with text
matches all objects not matching the selector selector

matches all objects matching selectorl and selector2

5.2.9. Custom image output formats

Any mime type of the following output formats can be configured to be available as response

76



format for GetMap requests.

* image/png
* image/png; subtype=8bit
* image/png; mode=8bit
* image/gif
* image/jpeg
» image/tiff
* image/x-ms-bmp
If no format has been configured, all formats are supported.
This is how the configuration section looks like for configuring only image/png as image output

format:

<GetMapFormats>
<GetMapFormat>image/png</GetMapFormat>
</GetMapFormats>

Custom format provider class

Using option element CustomGetMapFormat, it is possible to plug-in your own Java classes to
generate the output for a specific mime type

Option Cardinality Value  Description

Format 1.1 String  Mime type associated with this format configuration
JavacClass 1.1 String  Qualified Java class name

Property 0.n Complex Configure properties of the JavaClass

* Format: Mime type associated with this format configuration (and announced in
GetCapabilities)

* JavaClass: Therefore, an implementation of interface org.deegree.rendering.r2d.ImageSerializer
must be present on the classpath.

* Property:

This is how the configuration looks like for the implementation of GeoTIFF:

77



<GetMapFormats>
<CustomGetMapFormat>
<Format>image/tiff</Format>
<JavaClass>
org.deegree.services.wms.controller.plugins.ImageSerializerGeoTiff</JavaClass>
</CustomGetMapFormat>
</GetMapFormats>

5.2.10. Custom exception formats

Any mime type can be configured to be available as response format for Exceptions, although the
most commonly used is probably text/html. A XSLT script is used to generate the output.

This is how the configuration section looks like:

<ExceptionFormats>
<ExceptionFormat>
<XSLTFile>exception2html.xs1</XSLTFile>
<Format>text/html</Format>
</ExceptionFormat>
</ExceptionFormats>

Of course it is possible to define as many custom formats as you want, as long as you use a different
mime type for each (just duplicate the ExceptionFormat element). If you use one of the default
formats, the default output will be overridden with your configuration.

5.2.11. Extended capabilities

Important for applications like INSPIRE, it is often desirable to include predefined blocks of XML in
the extended capabilities section of the WMS capabilities output. This can be achieved simply by
adding these blocks to the extended capabilities element of the configuration:

<ExtendedCapabilities>
<MyCustomOutput xmlns="http://www.custom.org/output™>

</MyCustomOutput>
</ExtendedCapabilities>

The extended capabilities set in the WMS service configuration are ignored, if a
WARNING metadata configuration file (see chapter Metadata) exists. Instead, the
extended capabilities must be configured there.

Extended Capabilities are currently not supported by WMS 1.1.1. In WMS 1.1.1
WARNING configured extended capabilities are ignored and not included in the
capabilities document.

78



5.2.12. Vendor specific parameters

The deegree WMS supports a number of vendor specific parameters. Some parameters are
supported on a per layer basis while some are applied to the whole request. Most of the parameters
correspond to the layer options above.

The parameters which are supported on a per layer basis can be used to set an option globally, eg.
...&REQUEST=GetMap&ANTIALIAS=BOTH&..., or for each layer separately (using a comma
separated list):
&REQUEST=GetMap&ANTIALIAS=BOTH,TEXT,NONE&LAYERS=layer1,layer2,layer3&... Most of th
layer options have a corresponding parameter with a similar name: ANTIALIAS, INTERPOLATION,
QUALITY and MAX_FEATURES. The feature info radius can currently not be set dynamically.

The PIXELSIZE parameter can be used to dynamically adjust the resolution of the resulting image.
The default is the WMS default of 0.28 mm. So to achieve a double resolution, you can double the
WIDTH/HEIGHT parameter values and set the PIXELSIZE parameter to 0.14.

Using the QUERYBOXSIZE parameter you can include features when rendering that would normally
not intersect the envelope specified in the BBOX parameter. That can be useful if you have labels at
point symbols out of the envelope which would be rendered partly inside the map. Normal GetMap
behaviour will exclude such a label. With the QUERYBOXSIZE parameter you can specify a factor by
which to enlarge the original bounding box, which is used solely for querying the data store (the
actual extent returned will not be changed!). Use values like 1.1 to enlarge the envelope by 5% in
each direction (this would be 10% in total).

With the two vendorspecific parameter FILTERPROPERTY and FILTERVALUE you can request
rendering just a defined list of features. Each feature to be rendered will be identified by the value
of a given property. The name of the property is defined by the parameter filterproperty. The name
of the property is not qualified so all properties with the given local name will be considered. A list
of valid property values will be defined using parameter filtervalue, multiple values must be
comma separated. Each layer - or better its underlying data source - requested by a GeMap will
evaluated for having a feature with a property with given name and one of the defined values. Just
the features matching this filter condition will be rendered. It’s quite natural that only layer with
an underlying Feature-DataSource can be filtered. The other parameters addressed in the GetMap
(e.g. the style) request are not effected by this parameters. If the filter cannot be applied to the
layer, e.g. cause it is a raster layer or the data source does not have a matching property, the filter
will be ignored. If one the parameters is missing or the value empty, the filter is not applied.
Example: FILTERPROPERTY=type&FILTERVALUE=stone,wood

5.2.13. XML request encoding

A WMS 1.3.0 can be requested by HTTP POST (without any KVP) containing XML in request body.
The provided XML has to be compliant to a specific XML schema depending on the requested
operation.

The operations GetCapabilities, GetMap and GetFeatureInfo support XML request encoding.

79



GetCapabilities

The GetCapabilities XML request body has to be compliant to following schema:
* http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd

GetCapabilities XML request body example (can be used with Utah example workspace)

<GetCapabilities xmlns="http://www.opengis.net/ows/2.0" xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/ows/2.0

http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd"/>

GetMap

The GetMap XML request body has to be compliant to following schema:
* http://schemas.opengis.net/sld/1.1/GetMap.xsd

GetMap XML request body example (can be used with Utah example workspace)

80


http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd
http://schemas.opengis.net/sld/1.1/GetMap.xsd

<?xml version="1.0" encoding="UTF-8"?>
<GetMap xmlns="http://www.opengis.net/sld" xmlns:ows="http://www.opengis.net/ows"
xmlns:se="http://www.opengis.net/se"
xmlns:wms="http://www.opengis.net/wms" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance"
xsi:schemalocation="http://www.opengis.net/s1d
http://schemas.opengis.net/s1d/1.1/GetMap.xsd" version="1.3.0">
<StyledlLayerDescriptor version="1.1.0">
<NamedLayer>
<se:Name>municipalities</se:Name>
<NamedStyle>
<se:Name>Municipalities</se:Name>
</NamedStyle>
</NamedLayer>
<NamedLayer>
<se:Name>counties</se:Name>
<NamedStyle>
<se:Name>CountyBoundary</se:Name>
</NamedStyle>
</NamedLayer>
<NamedLayer>
<se:Name>zipcodes</se:Name>
<NamedStyle>
<se:Name>default</se:Name>
</NamedStyle>
</NamedLayer>
</StyledlLayerDescriptor>
<CRS>EPSG:4326</CRS>
<BoundingBox crs="http://www.opengis.net/gml/srs/epsqg.xml#4326">
<ows:LowerCorner>-115.4 35.0</ows:LowerCorner>
<ows:UpperCorner>-108.0 44.0</ows:UpperCorner>
</BoundingBox>
<Output>
<Size>
<Width>1024</Width>
<Height>512</Height>
</Size>
<wms :Format>image/png</wms:Format>
<Transparent>true</Transparent>
</0Qutput>
<Exceptions>XML</Exceptions>
</GetMap>

GetFeaturelInfo

The GetFeatureInfo XML request body has to be compliant to following schema:

81



<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.opengis.net/ows"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:sld="http://www.opengis.net/s1d"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="http://www.opengis.net/sld" schemalocation=
"http://schemas.opengis.net/sld/1.1.0/GetMap.xsd"/>
<xs:annotation>
<xs:documentation xml:lang="en">
XML Schema for 0GC Web Map Service GetFeaturelnfo request.
</xs:documentation>
</xs:annotation>
<!-- Root Element -->
<xs:element name="GetFeatureInfo"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:complexType>
<Xs:sequence>
<xs:element ref="s1d:GetMap"/>
<xs:element name="QuerylLayer" type="xs:string"
minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="I" type="xs:nonNegativeInteger"/>
<xs:element name="J" type="xs:nonNegativeInteger"/>
<xs:element name="Output">
<xs:complexType>
<xs:sequence>
<xs:element name="InfoFormat" type="xs:string"/>
<xs:element name="FeatureCount" type="xs:positiveInteger" minOccurs="0
"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Exceptions" type="xs:string" minOccurs="0"/>
<xs:element name="Vendor" minOccurs="0">
<!--not sure how to define vendor-specific area in open manner-->
</xs:element>
</Xs:sequence>
<xs:attribute name="version" type="xs:string" use="required"/>
<xs:attribute name="service" type="xs:string" use="required"/>
</xs:complexType>
</xs:element>
</xs:schema>

GetFeatureInfo XML request body example (can be used with Utah example workspace)

82



<?xml version="1.0" encoding="UTF-8"?>
<GetFeatureInfo xmlns="http://www.opengis.net/ows" xmlns:sld=
"http://www.opengis.net/sld" xmlns:se="http://www.opengis.net/se"
xmlns:wms="http://www.opengis.net/wms" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:schemalocation="http://www.opengis.net/ows ../xsd/GFI.xsd"
version="1.3.0" service="WMS">
<sld:GetMap version="1.3.0">
<sld:StyledlLayerDescriptor version="1.1.0">
<sld:NamedLayer>
<se:Name>municipalities</se:Name>
<sld:NamedStyle>
<se:Name>Municipalities</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
<sld:NamedLayer>
<se:Name>counties</se:Name>
<sld:NamedStyle>
<se:Name>CountyBoundary</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
<sld:NamedLayer>
<se:Name>zipcodes</se:Name>
<sld:NamedStyle>
<se:Name>default</se:Name>
</sld:NamedStyle>
</sld:NamedLayer>
</sld:StyledlLayerDescriptor>
<s1d:CRS>EPSG:4326</s1d:CRS>
<sld:BoundingBox crs="http://www.opengis.net/gml/srs/epsqg.xml#4326">
<LowerCorner>-115.4 35.0</LowerCorner>
<UpperCorner>-108.0 44.0</UpperCorner>
</s1d:BoundingBox>
<sld:Output>
<sld:Size>
<sld:Width>1024</s1d:Width>
<sld:Height>512</s1d:Height>
</sld:Size>
<wms :Format>image/png</wms:Format>
</sld:0utput>
</sld:GetMap>
<QuerylLayer>counties</QuerylLayer>
<I>50</1>
<I>15</3>
<Qutput>
<InfoFormat>text/xml</InfoFormat>
</0Qutput>
</GetFeaturelInfo>

83



5.2.14. SOAP request encoding

The SOAP protocol can be used to request a WMS 1.3.0. SOAP 1.1 and 1.2 are supported.

A SOAP request is send via HTTP POST (without any KVP) and contains a XML request body. The
request body consists of a SOAP envelope and a XML request body as described in chapter XML
request encoding.

The operations GetCapabilities, GetMap and GetFeatureInfo support SOAP request encoding.

GetCapabilities SOAP request body example (can be used with Utah example workspace)

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<GetCapabilities xmlns="http://www.opengis.net/ows/2.0" xmlns:xsi=
"http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.opengis.net/ows/2.0

http://schemas.opengis.net/ows/2.0/owsGetCapabilities.xsd"/>

</soapenv:Body>
</soapenv:Envelope>

SOAP encoding can be deactivated. Chapter SupportedRequests describes and gives

NOTE
an example how to disable it.

Capabilities

The support of the SOAP protocol by the WMS is described by an ExtendedCapabilities element in
namespace http://schemas.deegree.org/extensions/services/wms/1.3.0.

The ExtendedCapabilities are compliant to following schema:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="http://schemas.deegree.org/extensions/services/wms/1.3.0" xmlns:wms
="http://www.opengis.net/wms"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" xmlns:soapwms=
"http://schemas.deegree.org/extensions/services/wms/1.3.0"
targetNamespace="http://schemas.deegree.org/extensions/services/wms/1.3.0">

<xs:import namespace="http://www.opengis.net/wms" schemalocation=
"http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd" />

<xs:element name="SOAP">
<xs:complexType>
<xs:sequence>
<xs:element ref="wms:0nlineResource"” minOccurs="1" maxOccurs="1" />
<xs:element ref="soapwms:Constraint" minOccurs="1" maxOccurs="1" />
<xs:element ref="soapwms:SupportedOperations"” minOccurs="1" maxOccurs="1" />
</Xs:sequence>

84


http://schemas.deegree.org/extensions/services/wms/1.3.0

</xs:complexType>
</xs:element>
<xs:element name="Value">
<xs:simpleType>
<xs:restriction base="xs:decimal">
<xs:enumeration value="1.1" />
<xs:enumeration value="1.2" />
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Operation">
<xs:complexType>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="GetCapabilities" />
<xs:enumeration value="GetFeatureInfo" />
<xs:enumeration value="GetMap" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="Constraint">
<xs:complexType>
<Xxs:sequence>
<xs:element ref="soapwms:Value" maxOccurs="unbounded" />
</Xs:sequence>
<xs:attribute name="name" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="SOAPVersion" />
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>
</xs:element>
<xs:element name="SupportedOperations">
<xs:complexType>
<Xs:sequence>
<xs:element ref="soapwms:Operation" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="ExtendedCapabilities" substitutionGroup="
wms:_ExtendedCapabilities">
<xs:complexType>
<XxS:sequence>
<xs:element ref="soapwms:SOAP" minOccurs="0" maxOccurs="1" />
</Xs:sequence>
</xs:complexType>

85



</xs:element>
</xs:schema>

5.3. Web Map Tile Service (WMTS)

In deegree terminology, a deegree WMTS provides access to tiles stored in tile stores. The WMTS is
configured using so-called themes. A theme can be thought of as a collection of layers, organized in
a tree structure.

/— deegree workspace \

WMS

Theme 1 Theme 2 Theme n

. /

Figure 55. A WMTS resource is connected to any number of theme resources (with tile layers)

In order to fully understand deegree WMTS configuration, you will have to learn
configuration of other workspace aspects as well. Chapter Tile stores describes the

TIP configuration of tile data access. Chapter Map layers describes the configuration of
layers (only tile layers are usable for the WMTS). Chapter Map themes describes how
to create a theme from layers.

5.3.1. Minimal example

The only mandatory section is ServiceConfiguration (which can be empty), therefore a minimal
WMTS configuration example looks like this:

WMTS config example 1: Minimal configuration

<deegreeWMTS configVersion="3.4.0"
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts
http://schemas.deegree.org/services/wmts/3.4.0/wmts.xsd">
<ServiceConfiguration />

</deegreeWMTS>

This will create a deegree WMTS resource that connects to all configured themes of the workspace.

86



5.3.2. More complex example
A more complex configuration that restricts the offered themes looks like this:

WMTS config example 2: More complex configuration

<deegreeWMTS configVersion="3.4.0"
xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts
http://schemas.deegree.org/services/wmts/3.4.0/wmts.xsd">

<ServiceConfiguration>
<ThemeId>water</Themeld>
<ThemeId>roads</Themeld>

</ServiceConfiguration>

</deegreeWMTS>

5.3.3. Configuration overview

The deegree WMTS config file format is defined by schema file http://schemas.deegree.org/services/
wmts/3.4.0/wmts.xsd. The root element is deegreeWMTS and the config attribute must be 3.4.0.

The following table lists all available configuration options. When specifying them, their order must
be respected.

Option Cardinal Value Description
ity
MetadataURLTempl 0..1 Strin Template for generating URLs to layer metadata
ate g
Themeld 0.n Strin Limit the themes to use
g

Below the ServiceConfiguration section you can specify custom featureinfo format handlers:

<ServiceConfiguration>

</ServiceConfiguration>
<FeaturelnfoFormats>

</FeatureInfoFormats>

Have a look at section Custom feature info formats (in the WMS chapter) to see how custom
featureinfo formats are configured. Take note that the GetFeaturelnfo operation is currently only
supported for remote WMS tile store backends.

87


http://schemas.deegree.org/services/wmts/3.4.0/wmts.xsd
http://schemas.deegree.org/services/wmts/3.4.0/wmts.xsd

5.3.4. A complete WMTS configuration example, based on a
GeoTIFFTileStore

1. Storing the GeoTIFF file in the data/geotiff/.. directory of the deegree workspace

2. Adding the GeoTIFFTileMatrixSet configuration to datasources/tile/tilematrixset/.., referencing
config file from step (1)

o GeoTIFFTileMatrixSet config example:

<GeoTIFFTileMatrixSet  xmlns=

"http://www.deegree.org/datasource/tile/tilematrixset/geotiff"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=

"http://www.deegree.org/datasource/tile/tilematrixset/geotiff

http://schemas.deegree.org/datasource/tile/tilematrixset/3.4.0/geotiff/geotiff.x
Sdll

configVersion="3.4.0">
<StorageCRS>EPSG:25832</StorageCRS>
<File>../../../data/geotiff/kulturlandschaft.tif</File>
</GeoTIFFTileMatrixSet>

3. Adding a GeoTIFFTileStore configuration to datasources/tile/.. for the GeoTIFF file added in (1)
and (2)

o GeoTIFFTileStore config example:

<GeoTIFFTileStore xmlns="http://www.deegree.org/datasource/tile/geotiff"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/geotiff
http://schemas.deegree.org/datasource/tile/qgeotiff/3.4.0/geotiff.xsd"
configVersion="3.4.0">
<TileDataSet>
<Identifier>wmts_acrit</Identifier>
<TileMatrixSetId>tilematrixset wmts acrit</TileMatrixSetId>
<File>../../data/qgeotiff/kulturlandschaft_1.tif</File>
<ImageFormat>image/png</ImageFormat>
</TileDataSet>
</GeoTIFFTileStore>

NOTE Use "image/png" as ImageFormat even if the source is GeoTIFF.

4. Adding a TileLayer configuration in layers/.. with reference to the TileDataSet in (3)

o TileLayer config example:

88



<Tilelayers xmlns="http://www.deegree.org/layers/tile"
xmlns:1="http://www.deegree.org/layers/base"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:s="http://www.deegree.org/metadata/spatial”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/layers/tile
http://schemas.deegree.org/layers/tile/3.4.0/tile.xsd"
configVersion="3.4.0">
<Tilelayer>
<1:Name>wmts_acrit</1:Name>
<d:Title>Wmts Acrit tiled</d:Title>
<!-- Tile layers are not capable of on-the-fly reprojection so only the
source CRS can be requested -->
<s:CRS>EPSG:25832</s:CRS>
<1:ScaleDenominators min="0.0" max="1000000.0" />
<TileDataSet tileStoreld="wmts_acrit">wmts_acrit</TileDataSet>
</Tilelayer>
</Tilelayers>

5. Adding a Themes configuration in themes/.. with reference to the TileLayer in (4)

- Themes config example:

<Themes xmlns="http://www.deegree.org/themes/standard"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:d="http://www.deegree.org/metadata/description”
xmlns:s="http://www.deegree.org/metadata/spatial"
xsi:schemalocation="http://www.deegree.org/themes/standard
http://schemas.deegree.org/themes/3.4.0/themes.xsd"
configVersion="3.4.0">
<LayerStorelId>layer_tile_wmts_acrit</LayerStoreld>
<Theme>
<d:Title>Root theme</d:Title>
<s:CRS>EPSG:25832</s:CRS>
<Theme>
<Identifier>Karte</Identifier>
<d:Title>Karte</d:Title>
<Layer>wmts_acrit</Layer>
</Theme>
</Theme>
</Themes>

6. Adding a WMTS service configuration file to services/.. with reference to the theme in (5)

o WMTS service config example:

89



<deegreeWMTS xmlns="http://www.deegree.org/services/wmts"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wmts
http://schemas.deegree.org/services/wmts/3.4.0/wmts.xsd"
configVersion="3.4.0">
<MetadataURLTemplate>http://some.service/services?service=CSW&amp; request=GetRe
cordById&amp;version=2.0.2&amp;outputSchema=http://www.isotc211.0rg/2005/gmd&amp
;elementSetName=full&amp;id=${metadataSetId}</MetadatalURLTemplate>
<ServiceConfiguration>
<ThemeId>wmts acrit_theme</ThemeId>
</ServiceConfiguration>
</deegreeWMTS>

5.3.5. Optimizing deegree WMTS

In order to improve the response time of WMTS GetTile requests, it is possible to add an Ehcache
configuration to optimize the throughput of the service. The configuration is placed in the root
directory of the workspace.

* Ehcache config example:

<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="http://ehcache.org/ehcache.xsd"
dynamicConfig="true" monitoring="autodetect" name="map_cache">
<defaultCache eternal="true" maxElementsInMemory="100" overflowToDisk="false"/>
<cache name="map_cache"
maxElementsInMemory="10000"
eternal="true"
timeToIdleSeconds="300"
timeTolLiveSeconds="600"
overflowToDisk="false"
diskPersistent="false"
diskExpiryThreadIntervalSeconds="1"
memoryStoreEvictionPolicy="FIFQ"
statistics="true"/>
</ehcache>

* To enable the caching tile store add the following configuration along with the GeoTIFFTileStore
configuration to the datasources/tile/.. directory:

90



<CachingTileStore xmlns="http://www.deegree.org/datasource/tile/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/datasource/tile/cache
http://schemas.deegree.org/datasource/tile/cache/3.4.0/cache.xsd"
configVersion="3.4.0">
<!-- TileStoreld refers to tile store config file wmts_acrit.xml in the same
directory -->
<TileStoreld>wmts acrit</TileStoreld>
<!-- The related ehcache configuration file in the root directory of the deegree
workspace -->
<CacheConfiguration>../../ehcache_wmts_acrit.xml</CacheConfiguration>
<!-- The name of the cache in the ehcache configuration file
/ehcache/cache/@name -->
<CacheName>map_cache</CacheName>
</CachingTileStore>

5.3.6. Supported steps by deegree services console

Currently the deegree services console supports the following steps:

» creating TileStore and TileMatrixSet configuration files
* creating Layer and Themes configuration files

* creating WMTS configuration file

NOTE Not supported is the creation of the optional Ehcache configuration.

5.4. Catalogue Service for the Web (CSW)

In deegree terminology, a deegree CSW provides access to metadata records stored in a metadata
store. If the metadata store is transaction-capable, CSW transactions can be used to modify the
stored records.

/— deegree workspace \

(o)

y

Metadata Store

. J

Figure 56. A CSW resource is connected to exactly one metadata store resource

91



In order to fully understand deegree CSW configuration, you will have to learn
TIP configuration of other workspace aspects as well. Chapter Metadata stores describes
the configuration of metadatastores.

5.4.1. Minimal example
There is no mandatory element, therefore a minimal CSW configuration example looks like this:

CSW config example 1: Minimal configuration

<?xml version="1.0" encoding="UTF-8"7>

<deegreeCSW configVersion="3.4.0"
xmlns="http://www.deegree.org/services/csw"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/csw
http://schemas.deegree.org/services/csw/3.4.0/csw_configuration.xsd">

</deegreeCSW>

5.4.2. Configuration overview

The deegree CSW config file format is defined by schema file http://schemas.deegree.org/services/
csw/3.4.0/csw_configuration.xsd. The root element is deegreeCSW and the config attribute must be
3.4.0.

The following table lists all available configuration options. When specifiying them, their order
must be respected.

Option Cardina Valu Description
lity e
SupportedVersions 0..1 Strin Supported CSW Version (Default: 2.0.2)
g
MaxMatches 0..1 Inte Not negative number of matches (Default:0)
ger
MetadataStoreld 0..1 Strin Id of the meradatastoreld to use as backenend. By default the
g only configured store is used.
EnableTransaction 0..1 Bool Enable transactions (CSW operations) default: disabled.
S ean (Default: false)
EnableInspireExte 0..1 Enable the INSPIRE extensions, default: disabled
nsions
ExtendedCapabilit 0..1 any Include referenced capabilities section.
ies URI

92


http://schemas.deegree.org/services/csw/3.4.0/csw_configuration.xsd
http://schemas.deegree.org/services/csw/3.4.0/csw_configuration.xsd

Option Cardina Valu Description

lity e
ElementNames 0..1
List of configured return profiles. See following
xml snippet for
detailed informations.
<ElementNames>
<!-- Can contain multiuple sets of element names -->
<ElementName>

<!-- name of this set. Used <csw:ElementName>Base</csw:ElementName>
in a reqest to query this profile -->

<name>Base</name>

<!I-- List of XPath elements to return. If an element node is specified
the complete node is returned -->

<XPath>/gmd:MD_Metadata/gmd: lanquage</XPath>

<XPath>/gmd:MD_Metadata/gmd:fileldentifier</XPath>

<XPath>/gmd:MD_Metadata/gmd:hierarchylLevel</XPath>

</ElementName>

<ElementName>

5.4.3. Extended Functionality

"

* deegree3 CSW supports JSON as additional output format. Use outputFormat="application/json
in your GetRecords or GetRecordByld Request to get the matching records in JSON.

5.5. Web Processing Service (WPS)

A deegree WPS allows the invocation of geospatial processes. The offered processes are determined
by the attached process provider resources.

93



/— deegree workspace \

[ WPS ]
! ! !

Process Provider 1 Process Provider 2 Process Provider n

. J

Figure 57. Workspace components involved in a deegree WPS configuration

In order to fully master deegree WPS configuration, you will have to understand

TIP .
Process providers as well.

5.5.1. Minimal example

A minimal valid WPS configuration example looks like this:

<deegreeWlPS configVersion="3.4.0" xmlns="http://www.deegree.org/services/wps"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://www.deegree.org/services/wps
http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd">
</deegreelPS>

This will create a WPS resource with the following properties:

» All WPS protocol versions are enabled. Currently, this is only 1.0.0.
» The WPS resource will attach to all process provider resources in the workspace.

* Temporary files (e.g. for process results) are stored in the standard Java temp directory of the
deegree webapp.

The last 100 process executions are tracked.

* Memory buffers (e.g. for inline XML inputs) are limited to 1 MB each. If this limit is exceeded,
buffering is switched to use a file in the storage directory.

5.5.2. Complex example

A more complex configuration example looks like this:

94



<deegreellPS configVersion="3.4.0" xmlns="http://www.deegree.org/services/wps'

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.deegree.org/services/wps

http://schemas.deegree.org/services/wps/3.1.0/wps_configuration.xsd">

<SupportedVersions>
<Version>1.0.0</Version>
</SupportedVersions>

<DefaultExecutionManager>
<StorageDir>../var/wps/</StorageDir>
<TrackedExecutions>1000</TrackedExecutions>
<InputDiskSwitchLimit>1048576</InputDiskSwitchLimit>
</DefaultExecutionManager>

</deegreeWPS>

This will create a WPS resource with the following properties:

Enabled WPS protocol versions: 1.0.0

The WPS resource will attach to all process provider resources in the