org.deegree.crs.projections.conic
Class ConicProjection
java.lang.Object
org.deegree.crs.CRSIdentifiable
org.deegree.crs.projections.Projection
org.deegree.crs.projections.conic.ConicProjection
- Direct Known Subclasses:
- LambertConformalConic
public abstract class ConicProjection
- extends Projection
The ConicProjection
is a super class for all conic projections.
(From Snyder p.97)
To show a region for which the greatest extent is from east to west in the temperate zones, conic projections are
usually preferable to cylindrical projections.
Normal conic projections are distinguished by the use of arcs of concentric circles for parallesl of latitude and
equally spaced straight radii of these circles for meridians. The angles between the meridians on the map are smaller
than the actual differences in longitude. The circular arcs may or may not be equally spaced, depending on the
projections. The polyconic projections and the oblique conic projections have characteristcs different from these.
There are three important classes of conic projections:
- The equidistant
- the conformal
- the equal area
- Version:
- $Revision: 18171 $, $Date: 2009-06-17 16:00:07 +0200 (Mi, 17 Jun 2009) $
- Author:
- Rutger Bezema, last edited by: $Author: mschneider $
Constructor Summary |
ConicProjection(double firstParallelLatitude,
double secondParallelLatitude,
GeographicCRS geographicCRS,
double falseNorthing,
double falseEasting,
javax.vecmath.Point2d naturalOrigin,
Unit units,
double scale,
boolean conformal,
boolean equalArea,
CRSIdentifiable id)
|
Methods inherited from class org.deegree.crs.projections.Projection |
clone, doInverseProjection, doProjection, getCosphi0, getDatum, getEccentricity, getEllipsoid, getFalseEasting, getFalseNorthing, getGeographicCRS, getImplementationName, getNaturalOrigin, getPrimeMeridian, getProjectionLatitude, getProjectionLongitude, getScale, getScaleFactor, getSemiMajorAxis, getSemiMinorAxis, getSinphi0, getSquaredEccentricity, getUnits, isConformal, isEqualArea, isSpherical, setFalseEasting, setScale, toString |
Methods inherited from class org.deegree.crs.CRSIdentifiable |
addAreaOfUse, addName, checkForNullObject, checkForNullObject, checkForNullObject, getAreaOfUse, getAreaOfUseBBox, getAreasOfUse, getCode, getCodeAndName, getCodes, getDescription, getDescriptions, getName, getNames, getOrignalCodeStrings, getVersion, getVersions, hasCode, hasId, hasIdOrName, setDefaultAreaOfUse, setDefaultDescription, setDefaultId, setDefaultName, setDefaultVersion |
ConicProjection
public ConicProjection(double firstParallelLatitude,
double secondParallelLatitude,
GeographicCRS geographicCRS,
double falseNorthing,
double falseEasting,
javax.vecmath.Point2d naturalOrigin,
Unit units,
double scale,
boolean conformal,
boolean equalArea,
CRSIdentifiable id)
- Parameters:
firstParallelLatitude
- the latitude (in radians) of the first parallel. (Snyder phi_1).secondParallelLatitude
- the latitude (in radians) of the second parallel. (Snyder phi_2).geographicCRS
- falseNorthing
- falseEasting
- naturalOrigin
- units
- scale
- conformal
- equalArea
- id
- an identifiable instance containing information about this projection
getFirstParallelLatitude
public final double getFirstParallelLatitude()
- Returns:
- the latitude of the first parallel which is the intersection of the earth with the cone or the
projectionLatitude if the cone is tangential with earth (e.g. one standard parallel).
getSecondParallelLatitude
public final double getSecondParallelLatitude()
- Returns:
- the latitude of the first parallel which is the intersection of the earth with the cone or the
projectionLatitude if the cone is tangential with earth (e.g. one standard parallel).
equals
public boolean equals(Object other)
- Overrides:
equals
in class Projection
hashCode
public int hashCode()
- Implementation as proposed by Joshua Block in Effective Java (Addison-Wesley 2001), which supplies an even
distribution and is relatively fast. It is created from field f as follows:
- boolean -- code = (f ? 0 : 1)
- byte, char, short, int -- code = (int)f
- long -- code = (int)(f ^ (f >>>32))
- float -- code = Float.floatToIntBits(f);
- double -- long l = Double.doubleToLongBits(f); code = (int)(l ^ (l >>> 32))
- all Objects, (where equals( ) calls equals( ) for this field) -- code = f.hashCode( )
- Array -- Apply above rules to each element
Combining the hash code(s) computed above: result = 37 * result + code;
- Overrides:
hashCode
in class Projection
- Returns:
- (int) ( result >>> 32 ) ^ (int) result;
- See Also:
Object.hashCode()
an open source project founded by lat/lon, Bonn, Germany.
For more information visit: http://www.deegree.org]]>